Cooperative games, replicator dynamics, and stability

合作博弈、复制动力学和稳定性

基本信息

项目摘要

Evolutionary models have been part and parcel of economics for a long time. A specific class of such models has been developed within game theory. In usual parlance, "evolutionary game theory" means the combination of evolutionary approaches with non-cooperative games. Particularly close to the theory of evolution in biology are replicator dynamics.So far, only few efforts have been taken to combine evolutionary approaches with cooperative game theory. This is what this projects aims at. We develop and analyze replicator dynamics that are based on cooperative games, particularly with respect to stable populations.In the first part of the project, we continue the study of the Lovász-Shapley replicator dynamics initiated by Casajus, Kramm, and Wiese (2020, JET). These dynamics are derived from cooperative games with transferable utility (TU games) by help of the Lovász-Shapley solution (Casajus and Wiese, 2017, IJGT). Players are regarded as types of agents and their weights as the sizes of the populations of agents of these types. In order to handle them, we have to apply the theory of differential equations with discontinuous right-hand side (Filippov, 1988). Whereas the relation between the stable populations in these dynamics and the underlying TU games already has been clarified, remains the question of the existence and stability of cycles, for example.The Lovász-Shapley solution is based on a Leontief type technology, i.e., the types are complements. Alternatively, one could consider a technology, where the types are perfect substitutes, or, more generally, technologies that can be described by CES production functions. In the second part of the project, we generalize the Lovász-Shapley solution for these production functions using the construction introduced by Casajus and Wiese (2017, IJGT). We analyze these CES solutions and compare their properties with those of the Lovász-Shapley solution.In the third part of the project, we extend the analysis of the first part to the CES solutions.
进化模型长期以来一直是经济学的重要组成部分。博弈论中已经开发出了一类特定的模型。用通常的说法,“进化博弈论”意味着进化方法与非合作博弈的结合。与生物学中的进化论特别接近的是复制动力学。到目前为止,只有很少的努力将进化方法与合作博弈论结合起来。这就是该项目的目的。我们开发和分析基于合作博弈的复制动态,特别是在稳定群体方面。在该项目的第一部分,我们继续研究由 Casajus、Kramm 和 Wiese 发起的 Lovász-Shapley 复制动态(2020,JET)。这些动态源自具有可转移效用的合作博弈(TU 博弈),借助 Lovász-Shapley 解决方案(Casajus 和 Wiese,2017,IJGT)。玩家被视为代理的类型,他们的权重被视为这些类型代理的群体规模。为了处理它们,我们必须应用右手边不连续的微分方程理论(Filippov,1988)。尽管这些动态中的稳定群体与潜在的 TU 博弈之间的关系已经得到澄清,但仍然存在循环的存在性和稳定性问题。Lovász-Shapley 解决方案基于 Leontief 类型技术,即类型是互补的。或者,人们可以考虑一种技术,其中类型是完美的替代品,或者更一般地说,可以通过 CES 生产函数来描述的技术。在该项目的第二部分中,我们使用 Casajus 和 Wiese (2017, IJGT) 引入的结构概括了这些生产函数的 Lovász-Shapley 解决方案。我们分析了这些 CES 解决方案,并将它们的属性与 Lovász-Shapley 解决方案的属性进行了比较。在该项目的第三部分,我们将第一部分的分析扩展到 CES 解决方案。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Professor Dr. André Casajus其他文献

Professor Dr. André Casajus的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Professor Dr. André Casajus', 18)}}的其他基金

Produktion, Verhandlungen und Außenoptionen
生产、谈判和外部选择
  • 批准号:
    59122728
  • 财政年份:
    2008
  • 资助金额:
    --
  • 项目类别:
    Research Grants
Isomorphiekonzepte für Spiele in extensiver Form und deren Beziehung zur Isomorphie der Agentennormalformen
广义形式博弈的同构概念及其与主体范式同构的关系
  • 批准号:
    5444520
  • 财政年份:
    2004
  • 资助金额:
    --
  • 项目类别:
    Research Fellowships
Endogenous foundations of asymmetric solutions for cooperative games
合作博弈非对称解的内生基础
  • 批准号:
    522837108
  • 财政年份:
  • 资助金额:
    --
  • 项目类别:
    Research Grants

相似国自然基金

Graphon mean field games with partial observation and application to failure detection in distributed systems
  • 批准号:
  • 批准年份:
    2025
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目

相似海外基金

Games, Heritage, Arts, & Sport: the economic, social, and cultural value of the European videogame ecosystem (GAMEHEARTS)
游戏、遗产、艺术、
  • 批准号:
    10104584
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    EU-Funded
Design practices and transgender agency in video games in independent and mainstream contexts (2005-2022)
独立和主流背景下视频游戏的设计实践和跨性别机构(2005-2022)
  • 批准号:
    2902441
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Studentship
CAREER: Learning Theory for Large-scale Stochastic Games
职业:大规模随机博弈的学习理论
  • 批准号:
    2339240
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
Econometric Analysis of Dynamic Games with Limited Information
有限信息动态博弈的计量经济学分析
  • 批准号:
    ES/X011186/1
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Research Grant
Paying and playing: Assessing and regulating digital games-as-a-service
支付和游戏:评估和监管数字游戏即服务
  • 批准号:
    DE240101275
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Discovery Early Career Researcher Award
Hybrid Technologies for Tabletop Games
桌面游戏的混合技术
  • 批准号:
    DE240100730
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Discovery Early Career Researcher Award
Games for Good
公益游戏
  • 批准号:
    EP/X042596/1
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Research Grant
AF: Small: Equilibrium Computation and Multi-Agent Learning in High-Dimensional Games
AF:小:高维游戏中的平衡计算和多智能体学习
  • 批准号:
    2342642
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Games, Heritage, Arts, & Sport: the economic, social, and cultural value of the European videogame ecosystem (GAMEHEARTS)
游戏、遗产、艺术、
  • 批准号:
    10105059
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    EU-Funded
Feasibility of using Artist-AI co-creativity workflows for remastering classic video games
使用 Artist-AI 共同创意工作流程重新制作经典视频游戏的可行性
  • 批准号:
    10081575
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Collaborative R&D
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了