Stratification and Augmentation of EEG-Neurofeedback in MDD by Monitoring of Dynamic Brain States via Simultaneous Electroencephalography and Magnetic Resonance (EEG-fMRI)

通过同步脑电图和磁共振 (EEG-fMRI) 监测动态大脑状态,对 MDD 中的脑电图神经反馈进行分层和增强

基本信息

项目摘要

EEG Neurofeedback (NF) is a computer guided training method, which enables to train for a voluntary control over ones own brain signals. Because these are often abnormal in neuropsychiatric disorders, EEG NF poses a promising alternative or supplementary treatment option for neuropsychiatric disorders, including Major Depressive Disorder (MDD) as a common disorder affecting almost 20% of the population (Wittchen et al 2010).However, EEG NF efficacy is still low. There has always been a considerable proportion (30 to 40%) of people in which NF learning is ineffective that are therefore NF illiterate (Arns et al., 2014; Birbaumer et al., 2009). In MDD this also holds true. This illiteracy is not specific for MDD - it is a long existing issue that has been prevalent in the entire field of EEG Neurofeedback. Apart from one animal study showing that corticostriatal plasticity is important, the underlying neurophysiological mechanisms of EEG-NF illiteracy, especially in humans, have yet to be elucidated.Due to our recent methodological developments in simultaneous EEG/fMRI and previous investigatoins of dynamic network disturbances in MDD, we are now in a unique position to examine the underlying neurophysiological brain mechanisms of successful and insufficient EEG NF learning and exploit this understanding for improving individual NF success rates.In the proposed project, we aim to:1) Gain insights on the underlying neurophysiological mechanisms of EEG NF learning and related illiteracy with a simultaneous EEG/fMRI setup that allows for EEG NF training during fMRI scanning.2) Transfer knowledge of the detected mechanisms to accomplish our second aim: to augment EEG NF learning performance by using functional brain state information from the MRI scanner derived in real time during EEG NF training. We here will establish and validate a new method: simultaneous EEG/fMRI compound neurofeedback.We will accomplish this aim by 1) methodological work on the real time integration of multimodal neurofeedback and 2) dynamic analysis of newly acquired and preexisting datasets. Secondary exploitation of the generated data aims at definition of 3) individual fMRI predictors of illiteracy, 4) functional network definition during successful neurofeedback and 5) brain networks associated to transfer effects on functional targets for depression.
EEG神经反馈(NF)是一种计算机引导的训练方法,它可以训练对自己大脑信号的自愿控制。由于这些在神经精神疾病中通常是异常的,因此EEG NF为神经精神疾病提供了一种有希望的替代或补充治疗选择,包括作为影响近20%人群的常见疾病的重度抑郁症(MDD)(Wittchen et al 2010)。一直有相当大比例(30至40%)的人,其中NF学习是无效的,因此是NF文盲(Arns等人,2014; Birbaumer等人,2009年)。在MDD中,这也是正确的。这种文盲不是MDD特有的-这是一个长期存在的问题,在整个EEG神经反馈领域普遍存在。除了一项动物研究表明皮质纹状体可塑性是重要的,EEG-NF文盲的潜在神经生理学机制,特别是在人类中,尚未阐明。由于我们最近在同步EEG/fMRI和先前的MDD动态网络干扰的研究方法的发展,我们现在处于一个独特的位置,可以研究成功和不充分的EEG NF学习的潜在神经生理学大脑机制,并利用这种理解,在所提出的项目中,我们的目标是:1)获得EEG NF学习和相关文盲的潜在神经生理机制的见解,同时EEG/fMRI设置,允许在fMRI扫描期间进行EEG NF训练。2)转移检测到的机制的知识,以实现我们的第二个目标:通过使用来自EEG NF训练期间真实的时间的MRI扫描仪的功能性大脑状态信息来增强EEG NF学习性能。我们将建立并验证一种新的方法:同时EEG/fMRI复合神经反馈,通过1)多模态神经反馈的真实的时间整合的方法学研究和2)新获得和已有数据集的动态分析来实现这一目标。二次开发所产生的数据的目的是定义3)个人的功能磁共振成像预测文盲,4)功能网络的定义,在成功的神经反馈和5)与抑郁症的功能目标的转移效应的大脑网络。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Professor Dr. Martin Walter其他文献

Professor Dr. Martin Walter的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Professor Dr. Martin Walter', 18)}}的其他基金

Investigation of Glutamatergic Disturbances in Major Depressive Disorder using Ultra-High Field STEAM MRS
使用超高场 STEAM MRS 研究重度抑郁症的谷氨酸能紊乱
  • 批准号:
    164671483
  • 财政年份:
    2010
  • 资助金额:
    --
  • 项目类别:
    Research Grants

相似海外基金

LUMINOUS - Language Augmentation for Humanverse
LUMINOUS - Humanverse 的语言增强
  • 批准号:
    10106564
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    EU-Funded
高齢頚髄損傷の治療成績改善にむけた非侵襲血圧維持療法BP augmentationの開発
开发血压升高疗法,一种无创血压维持疗法,可改善老年颈脊髓损伤的治疗效果
  • 批准号:
    24K12323
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
STTR Phase II: Thermal Imaging, Augmentation of Microwave Energy in Various Tissues and Chronic Safety
STTR 第二阶段:热成像、增强各种组织中的微波能量和长期安全性
  • 批准号:
    2301440
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Cooperative Agreement
CAREER: Robotic Augmentation of Human Reflexes and Reach through Collaborative Grasping
职业:通过协作抓取机器人增强人类反应和触及范围
  • 批准号:
    2237843
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
SBIR Phase II: Arctic Environmental Modeling with Augmentation and Curation from an Artificial Intelligence Engine
SBIR 第二阶段:通过人工智能引擎进行增强和管理的北极环境建模
  • 批准号:
    2213136
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Cooperative Agreement
All for data, data for all: Improving accessibility of healthcare data through a co-designed augmentation of an existing online rehabilitation application.
一切为了数据,数据为所有人:通过共同设计的现有在线康复应用程序的增强功能,提高医疗保健数据的可访问性。
  • 批准号:
    10054277
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Grant for R&D
An Encepholographic Investigation of Spatial Cue Augmentation
空间线索增强的脑电图研究
  • 批准号:
    2899635
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Studentship
Development of a new bone augmentation method that enables long-term survival and long-term functional expression of transplanted cells by antioxidants
开发一种新的骨增强方法,通过抗氧化剂使移植细胞能够长期存活和长期功能表达
  • 批准号:
    23K09272
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Augmentation of PDE4D7 activity as a novel treatment strategy for men that have been stratified with high risk prostate cancer
增强 PDE4D7 活性作为针对高危前列腺癌男性的新型治疗策略
  • 批准号:
    2886779
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Studentship
B2: Learning Environments with Augmentation and Robotics for Next-gen Emergency Responders (LEARNER)
B2:为下一代应急响应人员提供增强和机器人技术的学习环境(学习者)
  • 批准号:
    2349138
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Cooperative Agreement
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了