Graph Structure Theory in Compiler Construction

编译器构建中的图结构理论

基本信息

  • 批准号:
    389550275
  • 负责人:
  • 金额:
    --
  • 依托单位:
  • 依托单位国家:
    德国
  • 项目类别:
    Research Grants
  • 财政年份:
    2017
  • 资助国家:
    德国
  • 起止时间:
    2016-12-31 至 2021-12-31
  • 项目状态:
    已结题

项目摘要

Recently, approaches based on tree-decompositions (a concept from graph-structure theory) of control-flow graphs have been introduced for classical problems in compiler construction, some of which have proven their practical usefulness in implementations in SDCC, a free mainstream C compiler for embedded systems.Optimizing compilers contain optimization, which attempt to improve the generated code, to make the resulting program faster, smaller or less energy-consuming. Since all it takes for a program to benefit from optimizations is being compiled with an optimizing compiler, compiler optimizations have a huge, immediate effect on resource usage in the real world.The goal of the project is further research into applications of graph-structure theory in compiler construction.Further research on known applications of tree-decompositions of control-flow graphs:All currently known applications of graph-structure theory use tree-decompositions of control-flow graphs. It should be investigated if and how these can be improved in particular with respect to runtime and generality. The limits of improvements should be clarified by hardness results (NP-hardness, hardness in the W-hierarchy).Further applications of tree-decompositions:The successes already achieved using tree-decompositions suggest applying tree-decompositions to further problems in compiler construction. The problems to be considered are in particular redundancy elimination, placement of local variables on the stack, procedural abstraction, and the influence of programming languages on the tree-width of control-flow graphs as well as efficient methods of obtaining tree-decompositions. Besides graph problems in classical compilers, also applications in hardware synthesis should be considered.Other graph-structure parameters and graphs:Besides tree-width, which is based on tree-decompositions, graph-structure theory knows many other graph-structure parameters. It should be investigated if these yield useful applications in compiler construction also considering graphs other than control-flow graphs.
最近,基于控制流图的树分解(来自图结构理论的一个概念)的方法被引入到编译器构造中的经典问题中,其中一些方法在SDCC(嵌入式系统的免费主流C编译器)的实现中证明了它们的实用价值。优化编译器包含优化,它试图改进生成的代码,使生成的程序更快、更小或消耗更少的能量。由于程序要从优化中受益,只需使用优化编译器进行编译,因此编译器优化对现实世界中的资源使用具有巨大而直接的影响。该项目的目标是进一步研究图结构理论在编译器构造中的应用。控制流图树分解已知应用的进一步研究:目前已知的图结构理论的所有应用都使用控制流图的树分解。应该研究是否以及如何改进这些功能,特别是在运行时和通用性方面。改进的限度应通过硬度结果(np -硬度,w级硬度)加以澄清。树分解的进一步应用:使用树分解已经取得的成功建议将树分解应用于编译器构造中的进一步问题。需要考虑的问题包括冗余消除、局部变量在堆栈中的位置、过程抽象、编程语言对控制流图树宽度的影响以及获得树分解的有效方法。除了经典编译器中的图形问题外,还应考虑在硬件综合中的应用。其他图结构参数和图:除了基于树分解的树宽度外,图结构理论还知道许多其他的图结构参数。如果在编译器构造中也考虑到图而不是控制流图,那么应该研究这些是否产生有用的应用程序。

项目成果

期刊论文数量(3)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
A lower bound on the tree-width of graphs with irrelevant vertices
  • DOI:
    10.1016/j.jctb.2018.12.008
  • 发表时间:
    2019-01
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Isolde Adler;P. K. Krause
  • 通讯作者:
    Isolde Adler;P. K. Krause
stdcbench: A Benchmark for Small Systems
stdcbench:小型系统的基准
lospre in linear time
以线性时间开始
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Dr. Philipp Klaus Krause其他文献

Dr. Philipp Klaus Krause的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

相似海外基金

Theory design and implementation of practical optimization and enumeration algorithms over graph structure
图结构实用优化和枚举算法的理论设计与实现
  • 批准号:
    20K11691
  • 财政年份:
    2020
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Studies on computational learning theory of formal graph systems by graph structure distribution
基于图结构分布的形式图系统计算学习理论研究
  • 批准号:
    17K00321
  • 财政年份:
    2017
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
CAREER: CDS&E: Quantifying & Designing Grain Boundary Network Structure via Spectral Graph Theory
职业:CDS
  • 批准号:
    1654700
  • 财政年份:
    2017
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
Structure theory for permutation groups and local graph theory conjectures
置换群的结构理论和局部图论猜想
  • 批准号:
    DE160100081
  • 财政年份:
    2016
  • 资助金额:
    --
  • 项目类别:
    Discovery Early Career Researcher Award
Research on Discrete Structure and Algorithms by using Spectral Graph Theory
利用谱图理论研究离散结构与算法
  • 批准号:
    15K20885
  • 财政年份:
    2015
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Young Scientists (B)
Graph Structure Theory and Applications to Algorithms
图结构理论及其在算法中的应用
  • 批准号:
    1202640
  • 财政年份:
    2012
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
Comprehensive analysis of human brain network structure based on graph theory using brain MRI
基于图论的脑MRI综合分析人脑网络结构
  • 批准号:
    23240056
  • 财政年份:
    2011
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Scientific Research (A)
Advances in Graph and Matroid Structure Theory
图和拟阵结构理论的进展
  • 批准号:
    0302221
  • 财政年份:
    2003
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Problems in Graph Structure Theory
图结构理论中的问题
  • 批准号:
    9701317
  • 财政年份:
    1997
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Mathematical Sciences: Graph Minor Structure Theory
数学科学:图小结构理论
  • 批准号:
    9401981
  • 财政年份:
    1994
  • 资助金额:
    --
  • 项目类别:
    Continuing grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了