Intrinsically Linear Incremental Sigma-Delta Converters - iLIDS
本质线性增量 Sigma-Delta 转换器 - iLIDS
基本信息
- 批准号:390567189
- 负责人:
- 金额:--
- 依托单位:
- 依托单位国家:德国
- 项目类别:Research Grants
- 财政年份:
- 资助国家:德国
- 起止时间:
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
Incremental Sigma-Delta Analog-digital Converters (I-SD ADC) combine the advantages of two worlds. They rely on oversampling and noise-shaping, and still they serve as true Nyquist rate converters and can thus be time-interleaved or multiplexed. This is achieved with a periodic reset.While I-SD ADC have been implemented in the past for very high resolution, but very low speed e.g. sensor interfaces, more recently higher bandwidth converters have been shown, which also employ the more power efficient continuous-time (CT) implementation of the loop filter. In order to achieve even higher bandwidth, a realization of internal multibit quantization comes as a necessity, as oversampling ratio (OSR) must be reduced. Multibit quantization concurrently allows more stable system operation, more aggressive loop filter scaling, more maximum stable amplitude (MSA) and less dynamic requirements on the amplifiers. But it comes with the tremendous disadvantage of non-linearity in the feedback digital-analog converter (DAC). In a first project phase, we have proposed an architecture, the I-SMASH, which allows multibit operation and DAC while not suffering from DAC non-linearity by dynamically reconfiguring the operation. Also, the employment of FIR DACs was introduced and ISI analyzed. A prototype implementation could be prominently published. Though, it came with the disadvantage, that stability, MSA, jitter and intersymbol interference (ISI) sensitivity are defined in the first, single-bit phase, whereas only the quantization noise performance is advantageously defined in the 2nd multibit phase.In the presented project proposal, we want to extend the findings of the first phase. An intrinsically linear 5-level switched capacitor (SC) DAC shall be employed, which is analyzed under the influence of CT loop filter operation and finite bandwidth of the amplifiers. It is modified to allow low dynamics and low sensitivity to jitter and ISI. We will employ variants of the SC DAC to achieve this. Time interleaving to achieve more levels, current starving to reduce peak currents, FIR DAC implementation to reduce dynamics further. Additionally, the project will extent the prior work by employing noise coupled SAR based internal quantization, in order to allow higher order loop filtering in both stages of I-SMASH. Finally, the concept of fractional sequencing will be modified to be able to employ it in dynamically reconfigured I-SD ADC together with COI reconstruction filters. Fractional sequencing, a general form of chopping, will thereby allow to reduce the influence of low frequency noise as well as to eliminate offset.
增量Sigma-Delta模数转换器(I-SD ADC)结合了两个领域的优势。它们依靠过采样和噪声整形,仍然充当真正的奈奎斯特速率转换器,因此可以进行时间交织或多路复用。这是通过定期重置来实现的。虽然I-SD ADC过去实现的是非常高的分辨率,但速度非常低,例如传感器接口,但最近出现了更高带宽的转换器,它也采用了更省电的连续时间(CT)环路滤波器实现。为了获得更高的带宽,必须实现内部多比特量化,因为必须降低过采样率(OSR)。多位量化同时允许更稳定的系统操作、更积极的环路滤波器缩放、更大的最大稳定幅度(MSA)和对放大器的更低动态要求。但是,反馈数模转换器(DAC)存在着非线性的巨大缺点。在第一个项目阶段,我们提出了一个架构,I-SMASH,它允许多位运算和DAC,同时通过动态重新配置操作而不受DAC非线性的影响。介绍了FIR数模转换器的应用,并对码间干扰进行了分析。原型实现可能会在显著位置发布。然而,它的缺点是,稳定性、MSA、抖动和符号间干扰(ISI)敏感性在第一个单比特阶段被定义,而在第二个多比特阶段仅定义量化噪声性能是有利的。采用本征线性的5电平开关电容(SC)DAC,分析了CT环路滤波操作和放大器带宽有限的影响。它被修改为允许低动态和对抖动和ISI的低敏感度。我们将采用SC DAC的变种来实现这一点。时间交错实现更多的电平,电流饥饿降低峰值电流,FIR DAC实现进一步降低动态。此外,该项目将通过采用基于噪声耦合的SAR的内部量化来扩展先前的工作,以便在I-SMASH的两个阶段都允许更高阶的环路滤波。最后,分数排序的概念将被修改,以便能够将其与COI重建滤波器一起用于动态重新配置的I-SD ADC。分数排序是斩波的一种一般形式,因此可以减少低频噪声的影响并消除偏移。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Professor Dr.-Ing. Maurits Ortmanns其他文献
Professor Dr.-Ing. Maurits Ortmanns的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Professor Dr.-Ing. Maurits Ortmanns', 18)}}的其他基金
Implantable module-based microchip networks
基于可植入模块的微芯片网络
- 批准号:
401023906 - 财政年份:2018
- 资助金额:
-- - 项目类别:
Research Grants
Single OpAmp Higher-Order Filters in Sigma-Delta Modulators
Sigma-Delta 调制器中的单运算放大器高阶滤波器
- 批准号:
334873694 - 财政年份:2017
- 资助金额:
-- - 项目类别:
Research Grants
Highest-Linearity Nyquist Rate SAR ADCs in nm-CMOS - NanoSAR
采用 nm-CMOS 的最高线性奈奎斯特速率 SAR ADC - NanoSAR
- 批准号:
245868713 - 财政年份:2014
- 资助金额:
-- - 项目类别:
Research Grants
Effective data reduction for wireless transmission of neural activity (EDnA)
有效减少神经活动无线传输的数据 (EDnA)
- 批准号:
230027621 - 财政年份:2013
- 资助金额:
-- - 项目类别:
Research Grants
State- and parameter estimation in Sigma-Delta ADC`s by using Kalman-filters
使用卡尔曼滤波器估计 Sigma-Delta ADC 中的状态和参数
- 批准号:
190715610 - 财政年份:2011
- 资助金额:
-- - 项目类别:
Research Grants
Korrelationsbasierte Systemanalyse und Hintergrund-Korrektur für Sigma-Delta Analog-Digital Umsetzer durch Nutzung optimaler Testsignale
使用最佳测试信号对 Sigma-Delta 模数转换器进行基于相关性的系统分析和背景校正
- 批准号:
40403750 - 财政年份:2007
- 资助金额:
-- - 项目类别:
Research Grants
Dual Quantization DAC for High-Linearity Multibit Continuous-Time Sigma-Delta Modulators - DuQDAC
用于高线性度多位连续时间 Sigma-Delta 调制器的双量化 DAC - DuQDAC
- 批准号:
433735880 - 财政年份:
- 资助金额:
-- - 项目类别:
Research Grants
0-X MASH Continuous-Time Pipeline ADC based on TI-SAR
基于 TI-SAR 的 0-X MASH 连续时间流水线 ADC
- 批准号:
392004833 - 财政年份:
- 资助金额:
-- - 项目类别:
Research Grants
Secure Mixed-Signal Neural Networks - SeMSiNN
安全混合信号神经网络 - SeMSiNN
- 批准号:
535473873 - 财政年份:
- 资助金额:
-- - 项目类别:
Priority Programmes
Time-Variant Architectures and Stabilty Criteria for Incremental Sigma-Delta ADC(TASC for IADC )
增量 Sigma-Delta ADC 的时变架构和稳定性标准(TASC for IADC)
- 批准号:
288845960 - 财政年份:
- 资助金额:
-- - 项目类别:
Research Grants
相似国自然基金
Development of a Linear Stochastic Model for Wind Field Reconstruction from Limited Measurement Data
- 批准号:
- 批准年份:2020
- 资助金额:40 万元
- 项目类别:
相似海外基金
Regulation of Linear Ubiquitin Signaling in Innate Immunity
先天免疫中线性泛素信号传导的调节
- 批准号:
MR/X036944/1 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Research Grant
CAREER: Scalable algorithms for regularized and non-linear genetic models of gene expression
职业:基因表达的正则化和非线性遗传模型的可扩展算法
- 批准号:
2336469 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Continuing Grant
CAREER: Theoretical and Computational Advances for Enabling Robust Numerical Guarantees in Linear and Mixed Integer Programming Solvers
职业:在线性和混合整数规划求解器中实现鲁棒数值保证的理论和计算进展
- 批准号:
2340527 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Continuing Grant
CAREER: Leveraging Randomization and Structure in Computational Linear Algebra for Data Science
职业:利用计算线性代数中的随机化和结构进行数据科学
- 批准号:
2338655 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Continuing Grant
Statistical aspects of non-linear inverse problems
非线性反问题的统计方面
- 批准号:
EP/Y030249/1 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Research Grant
CAREER: Effective Hamiltonian Downfolding Methods for Studying Linear and Nonlinear Responses of Quantum Materials
职业:研究量子材料线性和非线性响应的有效哈密顿向下折叠方法
- 批准号:
2338704 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Continuing Grant
RII Track-4:NSF: Construction of New Additive and Semi-Implicit General Linear Methods
RII Track-4:NSF:新的加法和半隐式一般线性方法的构造
- 批准号:
2327484 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Standard Grant
DMS-EPSRC: Certifying Accuracy of Randomized Algorithms in Numerical Linear Algebra
DMS-EPSRC:验证数值线性代数中随机算法的准确性
- 批准号:
EP/Y030990/1 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Research Grant
Linear Response and Koopman Modes: Prediction and Criticality - LINK
线性响应和库普曼模式:预测和临界性 - LINK
- 批准号:
EP/Y026675/1 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Research Grant
Structural Performance Analysis of a Floating Green Energy Storage Subjected to Non-Linear Loads
非线性载荷下浮动绿色储能结构性能分析
- 批准号:
2902122 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Studentship