Converse Transduction in the Presence of Strong Electrical Field Gradients in Ferroelectrics (ConTraGrad)

铁电体强电场梯度下的逆传导 (ConTraGrad)

基本信息

项目摘要

The overall objective of this project is gaining a deeper insight into the behavior of the ferroelectric class of piezoelectric materials when subject to high electric fields and strong electrical gradients covering both, the piezoelectric and flexoelectric effects. Flexoelectricity refers to the electromechanical coupling between the mechanical strain gradient and the electrical polarization in a dielectric. Recently, more and more interest in scientific research has been shifted towards flexoelectricity in ferroelectrics. The investigation will be executed as collaboration between the Technische Universität München (TUM) and the Karlsruhe Institute of Technology (KIT). The TUM group will mainly be responsible for performing the experimental investigations while the KIT group will be working on the theoretical investigation, i.e. modeling and simulation. The objectives and the work will be organized in two parts. The first objective, primarily related to the occurrence of high electric fields, is to study actuators with singlesided interdigitated electrode (IDE)-patterns by means of a theory for large signal hysteresis behavior in view of understanding and optimizing the actuator deformation after poling, as well as investigating the actuation potential with special consideration ofpossible piezoelectric non-linearity. The second objective, related to strong electrical gradients in the first place, concerns the converse flexoelectric effect. For the actuators with single sided IDE-patterns subject of this proposal, this involves investigating the relevance of the converse flexoelectric effect on one side and understanding thecontribution of the converse flexoelectric effect to the actuation behavior on the other. The application of strong electrical gradients is expected to lead to new types of behavior. In view of the above objectives, we propose to study: 1) piezoelectric non-linearity: frozen domains within the material become mobile (i.e. usable), in effectincreasing the magnitude of the piezoelectric coefficients. 2) converse flexoelectricity: strong non-uniform electric fields with pronounced gradients lead to activating the converse flexoelectric effect. 3) piezoelectric-flexoelectric coupling: information on the interplay between the two effects is currently quasi non-existent. The knowledge gained from this project has important practical consequences. For instance, it might enable realization of fail-safe actuators that function in temperatures that exceed the Curietemperature of piezoelectric ceramics. The actuators can then serve as the active components for devices in extreme environments.
这个项目的总体目标是更深入地了解铁电类压电材料在承受高电场和强电场梯度时的行为,包括压电性和挠性电效应。挠性电是指介质中机械应变梯度和电极化之间的机电耦合。近年来,越来越多的科研兴趣转向了铁电材料中的挠性电性。这项调查将在门兴理工大学(TUM)和卡尔斯鲁厄理工学院(KIT)之间进行。TUM组将主要负责进行实验研究,而KIT组将致力于理论研究,即建模和仿真。目标和工作将分两部分安排。第一个目标是利用大信号迟滞行为理论来研究单边交指电极(IDE)结构的驱动器,以了解和优化驱动器极化后的变形,以及在特别考虑可能的压电非线性的情况下研究驱动器的驱动势,主要涉及强电场的产生。第二个目标首先与强的电梯度有关,它涉及到逆曲电效应。对于本文提出的具有单面IDE图案的致动器,这涉及到调查一侧的逆弯电效应与另一侧的致动行为的关系。强电梯度的应用有望导致新类型的行为。鉴于上述目标,我们建议研究:1)压电非线性:材料内的冻结区域变得可移动(即可用),从而有效地增加了压电系数的大小。2)逆曲电性:具有明显梯度的强非均匀电场导致激活逆曲电效应。3)压电-挠曲电耦合:关于这两种效应之间相互作用的信息目前几乎不存在。从这个项目中获得的知识具有重要的实际意义。例如,它可能实现故障安全执行器,其工作温度超过压电陶瓷的CurieteTemperature。然后,执行器可以作为极端环境中设备的有源部件。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Professor Dr.-Ing. Marc Kamlah其他文献

Professor Dr.-Ing. Marc Kamlah的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Professor Dr.-Ing. Marc Kamlah', 18)}}的其他基金

Tailoring the Electromechanical Behavior of Lead-Free Ceramic/Ceramic Composite Ferroelectrics
定制无铅陶瓷/陶瓷复合铁电体的机电行为
  • 批准号:
    320512068
  • 财政年份:
    2016
  • 资助金额:
    --
  • 项目类别:
    Research Grants
Untersuchung des mehrachsigen elektro-mechanischen Materialverhalten von ferroelektrischen Keramiken
铁电陶瓷多轴机电材料行为的研究
  • 批准号:
    5397369
  • 财政年份:
    2002
  • 资助金额:
    --
  • 项目类别:
    Research Grants
Electromechanical large signal hysteresis phenomena of ferro electric piezo ceramics: constitutive modeling and finite element analysis
铁电压电陶瓷机电大信号磁滞现象:本​​构建模和有限元分析
  • 批准号:
    5326166
  • 财政年份:
    2001
  • 资助金额:
    --
  • 项目类别:
    Research Grants

相似海外基金

Conference: 2024 Photosensory Receptors and Signal Transduction GRC/GRS: Light-Dependent Molecular Mechanism, Cellular Response and Organismal Behavior
会议:2024光敏受体和信号转导GRC/GRS:光依赖性分子机制、细胞反应和生物体行为
  • 批准号:
    2402252
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Dissecting bacterial signal transduction
剖析细菌信号转导
  • 批准号:
    DP240102465
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Discovery Projects
Exploiting protein import to interrogate energy transduction through the bacterial cell envelope
利用蛋白质输入来询问通过细菌细胞包膜的能量转导
  • 批准号:
    BB/X016366/1
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Research Grant
2024 Signal Transduction in Engineered Extracellular Matrices Gordon Research Conference and Seminar; Southern New Hampshire University, Manchester, New Hampshire; 20-26 July 2024
2024年工程细胞外基质信号转导戈登研究会议及研讨会;
  • 批准号:
    2414497
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
I-Corps: Translation Potential of Real-time, Ultrasensitive Electrical Transduction of Biological Binding Events for Pathogen and Disease Detection
I-Corps:生物结合事件的实时、超灵敏电转导在病原体和疾病检测中的转化潜力
  • 批准号:
    2419915
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Development of tendon/ligament repair modulater using a chemically modified Tetra-PEG gel with signal transduction capability
使用具有信号转导能力的化学改性 Tetra-PEG 凝胶开发肌腱/韧带修复调节剂
  • 批准号:
    23K18325
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Challenging Research (Exploratory)
TLR Transduction of Dysbiotic Pelvic Pain
生态失调性盆腔疼痛的 TLR 转导
  • 批准号:
    10737191
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
Conference: 2023 Sensory Transduction in Microorganisms GRC/GRS: Microbial Signaling: From Molecular Mechanisms to Key Roles in Complex Environments
会议:2023 微生物感觉转导 GRC/GRS:微生物信号传导:从分子机制到复杂环境中的关键作用
  • 批准号:
    2400749
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
RII Track-4:NSF:Chloroplast retrograde signaling during plant immunity: integrating signal transduction and cellular dynamics
RII Track-4:NSF:植物免疫过程中叶绿体逆行信号传导:整合信号转导和细胞动力学
  • 批准号:
    2329266
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Understanding the role of hair cell mechanoelectrical transduction in age-related and noise-induced hearing loss
了解毛细胞机电转导在年龄相关性和噪声性听力损失中的作用
  • 批准号:
    BB/X000567/1
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Research Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了