Novel Error Measures and Source Conditions of Regularization Methods for Inverse Problems (SCIP)
反问题正则化方法的新颖误差测量和来源条件(SCIP)
基本信息
- 批准号:391100538
- 负责人:
- 金额:--
- 依托单位:
- 依托单位国家:德国
- 项目类别:Research Grants
- 财政年份:2018
- 资助国家:德国
- 起止时间:2017-12-31 至 2020-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Regularization methods are designed to limit the reconstruction errors in inverse problems. The basic principle of regularization is to limit the investigations in the reconstruction process to solutions which respect certain a-priori information, such as a maximal and minimal magnitude, smoothness, or certain conservation principles.Current regularization theory focuses on problems where the a-priori information can be represented as bounds of convex functionals, and then techniques from the mathematical field of Convex Analysis can be used to prove theoretical properties of the regularized solutions. Recently developed and more efficient regularization methods cannot be analyzed with such techniques, and in fact require novel measures for evaluating the efficiency. The development of such measures and conditions which guarantee the efficiency of modern regularization methods is the overall topic of this proposal which consists of five work packages.In the first and fundamental work package, the focus is on the verification of new convergence rates results for non-convex Tikhonov regularization. The second work package deals with the consequences of over smoothing penalties occurring in general Tikhonov regularization for a Hilbert space or Banach space setting. In the third work package the cross connections between source conditions and the convergence of level sets are under consideration. The fourth work package, however, deals with the interplay of variational source conditions and conditional stability estimates. New aspects of the Lavrentiev regularization with explicit and implicit forward operators are in the focus of the final fifth work package.
设计正则化方法是为了限制反问题的重构误差。正则化的基本原则是将重构过程中的研究限制在尊重某些先验信息的解中,例如最大值和最小值、平滑度或某些守恒原则。目前的正则化理论主要关注先验信息可以表示为凸泛函的界的问题,然后利用凸分析数学领域的技术来证明正则化解的理论性质。最近开发的更有效的正则化方法不能用这种技术进行分析,实际上需要新的方法来评估效率。制定保证现代正规化方法效率的这些措施和条件是本建议的总主题,该建议包括五个工作包。在第一个和基本的工作包中,重点是验证非凸Tikhonov正则化的新收敛率结果。第二个工作包处理Hilbert空间或Banach空间设置的一般Tikhonov正则化中出现的过度平滑惩罚的后果。在第三个工作包中,考虑了源条件与水平集收敛之间的交叉联系。然而,第四个工作包处理变源条件和条件稳定性估计的相互作用。Lavrentiev正则化与显式和隐式前向运算符的新方面是最后第五个工作包的重点。
项目成果
期刊论文数量(7)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Oversmoothing Tikhonov regularization in Banach spaces
Banach 空间中的过度平滑 Tikhonov 正则化
- DOI:10.1088/1361-6420/abcea0
- 发表时间:2020-08
- 期刊:
- 影响因子:2.1
- 作者:Chen De-Han;Hofmann Bernd;Yousept Irwin
- 通讯作者:Yousept Irwin
Simultaneous identification of volatility and interest rate functions-a two-parameter regularization approach
同时识别波动率和利率函数——双参数正则化方法
- DOI:10.1553/etna_vol51s99
- 发表时间:2019
- 期刊:
- 影响因子:0
- 作者:C. Hofmann;B. Hofmann;A. Pichler
- 通讯作者:A. Pichler
Penalty-based smoothness conditions in convex variational regularization
凸变分正则化中基于惩罚的平滑条件
- DOI:10.1515/jiip-2018-0039
- 发表时间:2019
- 期刊:
- 影响因子:1.1
- 作者:B. Hofmann;S. Kindermann;P. Mathé
- 通讯作者:P. Mathé
Tikhonov regularization in Hilbert scales under conditional stability assumptions
- DOI:10.1088/1361-6420/aadef4
- 发表时间:2018-07
- 期刊:
- 影响因子:2.1
- 作者:H. Egger;B. Hofmann
- 通讯作者:H. Egger;B. Hofmann
Case Studies and a Pitfall for Nonlinear Variational Regularization Under Conditional Stability
- DOI:10.1007/978-981-15-1592-7_9
- 发表时间:2018-10
- 期刊:
- 影响因子:0
- 作者:D. Gerth;B. Hofmann;Christopher Hofmann
- 通讯作者:D. Gerth;B. Hofmann;Christopher Hofmann
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Professor Dr. Bernd Hofmann其他文献
Professor Dr. Bernd Hofmann的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Professor Dr. Bernd Hofmann', 18)}}的其他基金
Regularization strategies for advanced laser pulse shape reconstruction
先进激光脉冲形状重建的正则化策略
- 批准号:
282462670 - 财政年份:2016
- 资助金额:
-- - 项目类别:
Research Grants
Regularization of nonlinear ill-posed problems in Banach spaces and conditional stability
Banach空间中非线性不适定问题的正则化和条件稳定性
- 批准号:
190672901 - 财政年份:2011
- 资助金额:
-- - 项目类别:
Research Grants
Natur der Inkorrektheit, approximative Quelldarstellung und adaptierte Regularisierungsmethoden bei Identifikationsproblemen
错误的本质、近似源表示和识别问题的适应正则化方法
- 批准号:
18961338 - 财政年份:2006
- 资助金额:
-- - 项目类别:
Research Grants
Oversmoothing regularization models in light of local ill-posedness phenomena
根据局部不适定现象的过平滑正则化模型
- 批准号:
453804957 - 财政年份:
- 资助金额:
-- - 项目类别:
Research Grants
相似国自然基金
基于Laplace Error惩罚函数的变量选择方法及其在全基因组关联分析中的应用
- 批准号:11001280
- 批准年份:2010
- 资助金额:17.0 万元
- 项目类别:青年科学基金项目
相似海外基金
A genome wide investigation into the roles of error-prone polymerases during human DNA replication
对易错聚合酶在人类 DNA 复制过程中的作用进行全基因组研究
- 批准号:
24K18094 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Early-Career Scientists
Superconducting Circuits for Error-Resilient Quantum Computers
用于容错量子计算机的超导电路
- 批准号:
DE240101033 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Discovery Early Career Researcher Award
CRII: AF: RUI: New Frontiers in Fundamental Error-Correcting Codes
CRII:AF:RUI:基本纠错码的新领域
- 批准号:
2347371 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Standard Grant
CAREER: Coding Subspaces: Error Correction, Compression and Applications
职业:编码子空间:纠错、压缩和应用
- 批准号:
2415440 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Continuing Grant
Error Detection of Utterances for Non-native Speakers Using Deep Anomaly Detection Technology
使用深度异常检测技术对非母语人士的话语进行错误检测
- 批准号:
23K11238 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Scientific Research (C)
Quantum Error Correction in a dual-species Rydberg array (QuERy)
双物种里德堡阵列中的量子纠错 (QuERy)
- 批准号:
EP/X025055/1 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Research Grant
CAREER: User-Based Simulation Methods for Quantifying Sources of Error and Bias in Recommender Systems
职业:基于用户的模拟方法,用于量化推荐系统中的错误和偏差来源
- 批准号:
2415042 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Continuing Grant
Building an Error-Annotated Corpus of Learner Indonesian and Developing an Automated Writing Support for Japanese Students Using Deep Linguistic Indonesian Parsers
建立一个错误注释的印尼语学习者语料库,并使用深度语言印尼语解析器为日本学生开发自动写作支持
- 批准号:
23K12235 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Early-Career Scientists
Research on continuous-variable optical quantum error correction
连续可变光量子纠错研究
- 批准号:
23KJ0498 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Grant-in-Aid for JSPS Fellows
The interplay between Inborn Error of Immunity and blood disorders: unravelling immune defects behind common haematological diseases
先天性免疫错误与血液疾病之间的相互作用:揭示常见血液病背后的免疫缺陷
- 批准号:
486782 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Operating Grants