Oversmoothing regularization models in light of local ill-posedness phenomena
根据局部不适定现象的过平滑正则化模型
基本信息
- 批准号:453804957
- 负责人:
- 金额:--
- 依托单位:
- 依托单位国家:德国
- 项目类别:Research Grants
- 财政年份:
- 资助国家:德国
- 起止时间:
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
In the past fifteen years, the role of smoothness in regularization theory aimed at the stable approximate solution of ill-posed operator equations in a Hilbert or Banach space setting has substantially grown. For such operator equations that represent inverse problems with applications in natural sciences, engineering, imaging and finance, the concept of smoothness is twofold: smoothness of elements in abstract function spaces to be reconstructed from noisy data (solution smoothness) on the one hand and smoothness of the linear or nonlinear forward operator in the model (operator smoothness) on the other hand. There is a strong interplay between both occurring varieties of smoothness. Successful regularization approaches are preferably adapted to expected smoothness and nonlinearity situations, but such expectations can fail. A typical example is the variational (Tikhonov-type) regularization with oversmoothing penalties, occurring when the penalty functional overestimates the actual smoothness such that the solution elements attain no finite penalty values. For oversmoothing penalties in Hilbert scale models, substantial convergence and rates results were recently achieved with the decisive participation of both applicants and their coauthors. The refinement and improvement of these results as well their extension to Banach space models and sparsity promoting regularization are challenging goals of this project with focus on classes of nonlinear inverse problems, where the character and degree of ill-posedness can be locally distributed. In this context, we also consider specific classes of inverse problems like the deautoconvolution problem for 2D-images and specific approaches like the data driven regularization as an aspect of deep learning, where missing components of the forward operator have to be compensated. Overall, by using analytical methods, discretization approaches and numerical experiments, the project intends to deliver a deeper understanding of methods for the treatment of oversmoothing models with their opportunities and limitations in light of occurring local ill-posedness phenomena in order to benefit from this for the selection of optimal regularization procedures and appropriate choices of the regularization parameters.
在过去的15年中,光滑性在正则化理论中的作用,旨在稳定的近似解的不适定算子方程在希尔伯特或Banach空间设置有显着增长。对于这样的算子方程,代表逆问题与应用在自然科学,工程,成像和金融,平滑的概念是双重的:平滑的抽象函数空间中的元素被重建从噪声数据(解决方案的平滑性),一方面和平滑的线性或非线性前向算子的模型(算子平滑)。这两种平滑度之间存在着强烈的相互作用。成功的正则化方法优选地适应于预期的平滑度和非线性情况,但是这样的预期可能失败。一个典型的例子是具有过平滑惩罚的变分(吉洪诺夫型)正则化,当惩罚泛函高估实际平滑度时发生,使得解元素没有获得有限的惩罚值。对于希尔伯特尺度模型中的过平滑惩罚,最近在申请人及其合著者的决定性参与下取得了实质性的收敛和速率结果。这些结果的细化和改进,以及它们的扩展到Banach空间模型和稀疏促进正则化是本项目的挑战性目标,重点是类非线性反问题,其中的字符和不适定性的程度可以局部分布。在这种情况下,我们还考虑了特定类别的逆问题,如2D图像的去自卷积问题,以及作为深度学习的一个方面的数据驱动正则化等特定方法,其中必须补偿前向算子的缺失分量。总的来说,通过使用分析方法,离散化方法和数值实验,该项目旨在更深入地了解处理过平滑模型的方法,以及它们在发生局部不适定性现象时的机会和局限性,以便从中受益于最佳正则化程序的选择和正则化参数的适当选择。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Professor Dr. Bernd Hofmann其他文献
Professor Dr. Bernd Hofmann的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Professor Dr. Bernd Hofmann', 18)}}的其他基金
Novel Error Measures and Source Conditions of Regularization Methods for Inverse Problems (SCIP)
反问题正则化方法的新颖误差测量和来源条件(SCIP)
- 批准号:
391100538 - 财政年份:2018
- 资助金额:
-- - 项目类别:
Research Grants
Regularization strategies for advanced laser pulse shape reconstruction
先进激光脉冲形状重建的正则化策略
- 批准号:
282462670 - 财政年份:2016
- 资助金额:
-- - 项目类别:
Research Grants
Regularization of nonlinear ill-posed problems in Banach spaces and conditional stability
Banach空间中非线性不适定问题的正则化和条件稳定性
- 批准号:
190672901 - 财政年份:2011
- 资助金额:
-- - 项目类别:
Research Grants
Natur der Inkorrektheit, approximative Quelldarstellung und adaptierte Regularisierungsmethoden bei Identifikationsproblemen
错误的本质、近似源表示和识别问题的适应正则化方法
- 批准号:
18961338 - 财政年份:2006
- 资助金额:
-- - 项目类别:
Research Grants
相似国自然基金
关于图像处理模型的目标函数构造及其数值方法研究
- 批准号:11071228
- 批准年份:2010
- 资助金额:32.0 万元
- 项目类别:面上项目
相似海外基金
Regularization for Nonlinear Panel Models, Estimation of Heterogeneous Taxable Income Elasticities, and Conditional Influence Functions
非线性面板模型的正则化、异质应税收入弹性的估计和条件影响函数
- 批准号:
2242447 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Standard Grant
CAREER: Nonlinear Models and Regularization for Infinite-Dimensional Inverse Problems
职业:无限维反问题的非线性模型和正则化
- 批准号:
1943201 - 财政年份:2020
- 资助金额:
-- - 项目类别:
Continuing Grant
Study on machine learning approaches for heterogeneous biological data based on mixing regularization models
基于混合正则化模型的异构生物数据机器学习方法研究
- 批准号:
17K00407 - 财政年份:2017
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Scientific Research (C)
Formulation of statistical models for longitudinal data and estimation by the sparse regularization
纵向数据统计模型的制定和稀疏正则化估计
- 批准号:
16K16020 - 财政年份:2016
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Young Scientists (B)
Comparisons of three-dimensional structures of proteins using hierarchical models and regularization for between-protein variations
使用分层模型和蛋白质间变异正则化比较蛋白质的三维结构
- 批准号:
22500275 - 财政年份:2010
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Scientific Research (C)
Regularization Methods in High Dimensions with Applications to Functional Data Analysis, Mixed Effects Models and Classification
高维正则化方法及其在函数数据分析、混合效应模型和分类中的应用
- 批准号:
0906784 - 财政年份:2009
- 资助金额:
-- - 项目类别:
Continuing Grant
Analytical and numerical aspects of relaxation and regularization in models of crystal plasticity
晶体塑性模型中弛豫和正则化的分析和数值方面
- 批准号:
35737043 - 财政年份:2007
- 资助金额:
-- - 项目类别:
Research Units
Sparsity oracle inequalities via l_1 regularization in nonparametric models
非参数模型中通过 l_1 正则化实现稀疏预言不等式
- 批准号:
0706829 - 财政年份:2007
- 资助金额:
-- - 项目类别:
Continuing Grant
Research on implementations of computer-intensive selection methods for regularized statistical models
正则化统计模型的计算机密集型选择方法的实现研究
- 批准号:
17500189 - 财政年份:2005
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Scientific Research (C)
Investigation on supersymmetric Pauli-Villars regularization for supersymmetric standard models
超对称标准模型的超对称Pauli-Villars正则化研究
- 批准号:
08640348 - 财政年份:1996
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Scientific Research (C)