Characterisation and modelling of multi-compartment karst systems by integrated interpretation of spring signals - iKarst

通过泉水信号的综合解释来表征和建模多室岩溶系统 - iKarst

基本信息

  • 批准号:
    397516788
  • 负责人:
  • 金额:
    --
  • 依托单位:
  • 依托单位国家:
    德国
  • 项目类别:
    Research Grants
  • 财政年份:
    2018
  • 资助国家:
    德国
  • 起止时间:
    2017-12-31 至 2023-12-31
  • 项目状态:
    已结题

项目摘要

Karst aquifer systems are heterogeneous hydrological systems with distinctive anisotropy. The characterisation of such systems is extremely challenging, since several processes are yet not fully understood. Classical approaches (i.e. combinations of methods considering specific aspects) are of limited applicability, as long as field investigations and their results are not complemented by appropriate comprehensive modelling concepts. Various tools for describing individual karst compartments (surface zone, vadose zone, and phreatic zone) already exist, however, integrated models considering all relevant processes by physically based approachesare still missing. Our preliminary work highlights similar challenges regarding a physically based modelling of karst features (input signal generation, conduit-matrix interaction, and conduit storage processes). Additionally, non-unique solutions of highly parameterisedmodels (model structure, parameters, and results) limit the application of complex numerical models. The separation of the entire karst system into individual compartments is used to enhance existing distributed-parameter models for a physically based and spatially distributed characterisation. This will lead to improved understanding of flow and transport processes. The tools are to be combined to an integrated modelling approach, which allows to identify model uncertainties through sophisticated inverse techniques (e.g. data weighting, objective functions). Forward modelling of idealised models allows to identify and quantify different input signal sources based on multiple spring signals (flow, heat, and solutes). The relevance of specific processes and parameters is evaluated by sensitivity analysis. Joint inversion of multiple signals is used to evaluate needed model complexity, depending on information and data availability. The stepwise adaption of model complexity reduces computational demands of highly parameterised complex karst system models. Model uncertainties are estimated via automatic inverse modelling tools. Concluding, this will allow to define future exploration demands and, therefore, foster karst system management.
岩溶含水层系统是具有明显各向异性的非均质水文系统。这种系统的特征是极具挑战性的,因为有几个过程还没有完全被理解。只要实地调查及其结果得不到适当的综合建模概念的补充,经典方法(即考虑具体方面的方法的组合)的适用性就有限。已经有各种工具来描述单独的岩溶区(表面区、渗流区和潜水区),但通过物理方法考虑所有相关过程的综合模型仍然缺乏。我们的初步工作突出了基于物理的岩溶特征建模(输入信号生成、管道-基质相互作用和管道存储过程)方面的类似挑战。此外,高度参数化模型(模型结构、参数和结果)的非唯一解限制了复杂数值模型的应用。将整个岩溶系统分成单独的隔间,用于增强现有的分布参数模型,以进行基于物理和空间分布的表征。这将导致对流动和运输过程的更好理解。这些工具将结合成一种综合建模方法,该方法允许通过复杂的逆技术(例如数据加权、目标函数)来识别模型不确定性。理想化模型的正演模型允许根据多个弹簧信号(流动、热量和溶质)识别和量化不同的输入信号源。通过敏感度分析评价了具体工艺和参数的相关性。多个信号的联合反演被用于评估所需的模型复杂性,这取决于信息和数据的可用性。模型复杂性的逐步适应减少了高度参数化的复杂岩溶系统模型的计算需求。通过自动逆建模工具估计模型的不确定性。最后,这将有助于确定未来的勘探需求,从而促进岩溶系统管理。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Dr. Jannes Kordilla其他文献

Dr. Jannes Kordilla的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Dr. Jannes Kordilla', 18)}}的其他基金

Multi-scale Smoothed Particle Hydrodynamics model for flow and transport in unsaturated fractured porous media
非饱和裂隙多孔介质中流动和输运的多尺度平滑粒子流体动力学模型
  • 批准号:
    320402845
  • 财政年份:
    2016
  • 资助金额:
    --
  • 项目类别:
    Research Grants

相似国自然基金

Improving modelling of compact binary evolution.
  • 批准号:
    10903001
  • 批准年份:
    2009
  • 资助金额:
    20.0 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

M2DESCO - Computational Multimode Modelling Enabled Design of Safe & Sustainable Multi-Component High-Entropy Coatings
M2DESCO - 计算多模式建模支持安全设计
  • 批准号:
    10096988
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    EU-Funded
Inferring epithelial tissue mechanics through data-efficient multi-fidelity modelling
通过数据高效的多保真度建模推断上皮组织力学
  • 批准号:
    BB/Y514020/1
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Research Grant
Random rays method in application to multi-physics modelling of advanced reactors
随机射线法在先进反应堆多物理场建模中的应用
  • 批准号:
    2889646
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Studentship
Spatial differentiation and key determinants of health-related well-being in Tameside and Glossop: geo-visualisation and multi-level spatial modelling
Tameside 和 Glossop 的空间分异和健康相关福祉的关键决定因素:地理可视化和多层次空间建模
  • 批准号:
    2886163
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Studentship
Multi-phase modelling and characterisation of mudrush hazard in cave mining
洞穴采矿中泥石流灾害的多相建模和表征
  • 批准号:
    LP220200792
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Linkage Projects
Construction of a multi-organ neural network with independent sensory and motor neurons
具有独立感觉和运动神经元的多器官神经网络的构建
  • 批准号:
    23K17204
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Multi-scale ensemble modelling of coastal systems in a changing climate
气候变化下沿海系统的多尺度集成建模
  • 批准号:
    FT220100009
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    ARC Future Fellowships
Probabilistic modelling and Quantification of Natural Hazards and Multi-risk at Site and Regional levels
现场和区域层面自然灾害和多重风险的概率建模和量化
  • 批准号:
    RGPIN-2022-04702
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
    Discovery Grants Program - Individual
Multi-variate and multi-modal modelling of neuroimaging data to better understand brain ageing
神经影像数据的多变量和多模式建模,以更好地了解大脑衰老
  • 批准号:
    RGPIN-2020-05448
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
    Discovery Grants Program - Individual
Multi-physical Modelling of Floating Type Wave Energy Converter
浮式波浪能转换器的多物理建模
  • 批准号:
    22K04566
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了