Understanding and Controlling Electronic Transport via Proteins: Nanoscale Electrode Architecture-enabled Energy Level Alignment
通过蛋白质理解和控制电子传输:纳米级电极架构支持的能级对齐
基本信息
- 批准号:397966586
- 负责人:
- 金额:--
- 依托单位:
- 依托单位国家:德国
- 项目类别:Research Grants
- 财政年份:2018
- 资助国家:德国
- 起止时间:2017-12-31 至 2021-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
In this project we want to answer the question "(how) can gating control the efficiency and the mech-anism of electron transport across proteins?". Much knowledge and understanding has accumulated on charge transfer processes in several proteins. There is also growing interest in charge transport through proteins in solid state-type junctions. Still, there are very central open questions concerning what appears to be remarkably efficient charge transport and its temperature-(in)dependence, ques-tions that impact directly the issue of what is/are the underlying transport mechanism(s). As known from other areas of electronics, use of a 3rd electrode in a solid-state architecture can allow con-trolled electrostatic 'gating' of charge transport (as in field-effect transistors). Finding ways to repro-ducibly add gating will be a huge step towards answering these open questions and unraveling elec-tron transport across proteins. With a gate the protein molecular electronic energy level distribution may be shifted w.r.t the leads Fermi levels, for correlation with the corresponding transport process-es. We intend to achieve the abovestated goal to allow tackling the fundamental issue of transport mechanisms technically by realizing different architectures of highly doped silicon contacts which are separated by a few up to ~ 10 nm, only (nanogap electrodes), and which feature a gate electrode in close proximity. We will use selected, suitable protein systems and after characterizing these thoroughly on planar surfaces such as those of same material as the electrodes, the nanogaps shall be specifically functionalized with these proteins. Subsequently, electrical transport measurements will be carried out on these nanogap devices as function of gate voltage, at varying temperatures and where applicable, as function of illumination. Additional, advanced characterization methods such as inelastic electron tunneling spectroscopy will complement the fundamental charge transport stud-ies. We will analyze and model our electrical data within the framework of existing and, as they be-come available, possibly new, theoretical models of charge transport through proteins contacted by solid-state electrodes. We expect that our work will provide muchneeded data, required to under-stand the complex charge transport scenarios in proteins, and eventually will become relevant for future applications in the field of bioelectronics including sensing, energy conversion and information storage.
本项目主要研究“门控如何控制蛋白质间电子传递的效率和机制”这一问题。".许多知识和理解已经积累了一些蛋白质中的电荷转移过程。在固态型结中通过蛋白质的电荷传输也越来越受到关注。然而,关于什么似乎是非常有效的电荷传输及其温度依赖性,存在非常核心的开放问题,这些问题直接影响什么是潜在的传输机制。如从电子学的其他领域已知的,在固态架构中使用第三电极可以允许电荷传输的受控静电“门控”(如在场效应晶体管中)。找到可复制地添加门控的方法将是回答这些开放性问题和解开蛋白质间电子传输的一大步。利用门可以使蛋白质分子的电子能级分布相对于前导费米能级发生位移,从而与相应的输运过程相关联。我们打算实现上述目标,以允许通过实现高度掺杂的硅接触的不同架构来在技术上解决传输机制的基本问题,所述高度掺杂的硅接触仅由几个高达~ 10 nm的间隔(纳米间隙电极)隔开,并且其特征在于紧密接近的栅极电极。我们将使用选定的、合适的蛋白质系统,并且在平面表面(例如与电极相同材料的平面表面)上彻底表征这些蛋白质系统之后,纳米间隙将被这些蛋白质特异性地功能化。随后,将在这些纳米间隙器件上进行电传输测量,作为栅极电压的函数,在不同的温度下,并且在适用的情况下,作为照明的函数。此外,先进的表征方法,如非弹性电子隧穿光谱将补充基本的电荷传输研究。我们将在现有的框架内分析和建模我们的电数据,并且当它们可用时,可能是新的,通过固态电极接触的蛋白质的电荷传输的理论模型。我们希望我们的工作将提供急需的数据,需要了解蛋白质中复杂的电荷传输情况,并最终将成为相关的未来应用领域的生物电子学,包括传感,能量转换和信息存储。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Professor Dr. Marc Tornow其他文献
Professor Dr. Marc Tornow的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Professor Dr. Marc Tornow', 18)}}的其他基金
Switchable DNA layers as novel scheme in silicon nanowire based bio-sensing
可切换 DNA 层作为基于硅纳米线的生物传感的新颖方案
- 批准号:
223745998 - 财政年份:2012
- 资助金额:
-- - 项目类别:
Research Grants
相似海外基金
Controlling the Electronic Structure of Metallic Nanoparticles using Surface Chemistry
利用表面化学控制金属纳米颗粒的电子结构
- 批准号:
2304821 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Standard Grant
Probing and Controlling Electronic Dynamics in Matter with Atomic Spatiotemporal Resolution
用原子时空分辨率探测和控制物质中的电子动力学
- 批准号:
2110633 - 财政年份:2021
- 资助金额:
-- - 项目类别:
Continuing Grant
Syntheses of Porous Molecular Conductors toward Creating and Controlling Novel Electronic States
多孔分子导体的合成以创造和控制新型电子态
- 批准号:
21H01901 - 财政年份:2021
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Scientific Research (B)
Multi-parameter investigation of factors controlling carbonyl emissions from electronic cigarettes
电子烟羰基排放控制因素的多参数研究
- 批准号:
10219699 - 财政年份:2021
- 资助金额:
-- - 项目类别:
Multi-parameter investigation of factors controlling carbonyl emissions from electronic cigarettes
电子烟羰基排放控制因素的多参数研究
- 批准号:
10441326 - 财政年份:2021
- 资助金额:
-- - 项目类别:
Controlling photochemistry via quantum superpositions of electronic states: towards attochemistry
通过电子态的量子叠加控制光化学:走向原子化学
- 批准号:
2601202 - 财政年份:2021
- 资助金额:
-- - 项目类别:
Studentship
Multi-parameter investigation of factors controlling carbonyl emissions from electronic cigarettes
电子烟羰基排放控制因素的多参数研究
- 批准号:
10659026 - 财政年份:2021
- 资助金额:
-- - 项目类别:
Controlling photophysics and photochemistry via quantum superpositions of electronic states: towards attochemistry
通过电子态的量子叠加控制光物理和光化学:走向原子化学
- 批准号:
EP/T006560/1 - 财政年份:2020
- 资助金额:
-- - 项目类别:
Research Grant
Controlling photophysics and photochemistry via quantum superpositions of electronic states: towards attochemistry
通过电子态的量子叠加控制光物理和光化学:走向原子化学
- 批准号:
EP/T006943/1 - 财政年份:2020
- 资助金额:
-- - 项目类别:
Research Grant
Exploring and controlling electronic properties of 2D architecture formed by highly-correlated radicals
探索和控制由高度相关的自由基形成的二维结构的电子特性
- 批准号:
20H02707 - 财政年份:2020
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Scientific Research (B)














{{item.name}}会员




