Polarization conversion of surface acoustic waves in solid structures - a new driving mechanism for acoustomicrofluidics

固体结构中表面声波的偏振转换——声微流体的新驱动机制

基本信息

项目摘要

This project is aimed at an essential investigation of the polarization conversion of different types of surface acoustic waves (SAW), namely, the conversion between vertical polarized (VP) and boundary polarized (BP) SAW. Our approach combines both experimental and theoretical work and is especially directed on SAW-driven microfluidics. By taking advantage of the polarization conversion, we plan to counteract a major drawback of conventional SAW-driven microfluidics, namely the parasitic leakage of acoustic energy into the polymeric container material forming walls and roof of microfluidic channels and chambers. The interdigital transducers (IDT) of such usual microfluidic actuator devices are located outside the channel and generate vertical polarized (VP) SAW. This is motivated by the fact, that only the mechanical surface displacement in vertical direction provokes the transfer of momentum into the fluid, i.e. the intended radiation of bulk acoustic waves into the fluid, what is indispensable for acoustofluidic actuation. However, such VP SAW generated outside the fluid container radiate acoustic energy also into the container material when passing the container walls. This is especially significant in case of the commonly used polymers. Beside the decreased amplitude available for actuation purposes inside the fluid, such radiation of acoustic energy into the container also can cause degradation of the container material due to local heating. Moreover, the bulk waves inside the container can destructively superimpose the bulk waves radiated from the substrate-fluid interface what then disturbs the operation of conventional SAW-based microfluidic devices. To overcome these drawbacks we aim at the deployment of polarization conversion in acoustomicrofluidic devices. The objective here is an improvement of SAW-driven devices by the application of initially boundary polarized (BP) surface waves: Once excited outside the microchannel BP SAW pass the polymer container due to the absence of a significant surface-normal vibration component almost without damping. When reaching the channel inside the SAW polarization is converted from boundary to vertical type due to the interaction of the wave with an appropriate scatterer located at the substrate-fluid interface. The VP SAW created inside the channel by this controlled polarization conversion will finally actuate the fluid like in conventional devices.By combining experimental and theoretical investigations we aspire to get a comprehensive understanding of the polarization conversion effect. However, the theoretical part is not restricted to the cases experimentally within the frame of this project. Simulations will provide a broader pattern of the effect of polarization conversion, predicting advantages it can offer and paving thereby the way for further research activity.
本项目旨在对不同类型声表面波(SAW)的极化转换,即垂直极化(VP)和边界极化(BP)SAW之间的转换进行必要的研究。我们的方法结合了实验和理论工作,特别是针对SAW驱动的微流体。通过利用偏振转换,我们计划抵消常规SAW驱动的微流体的主要缺点,即声能寄生泄漏到形成微流体通道和腔室的壁和顶部的聚合物容器材料中。这种常见的微流体致动器装置的叉指换能器(IDT)位于通道外部并产生垂直偏振(VP)SAW。这是由以下事实激发的,即,只有在垂直方向上的机械表面位移引起动量到流体中的传递,即体声波到流体中的预期辐射,这对于声流体致动是必不可少的。然而,在流体容器外部产生的这种VP SAW在通过容器壁时也将声能辐射到容器材料中。这在常用聚合物的情况下尤其重要。除了可用于流体内部的致动目的的减小的振幅之外,这种声能到容器中的辐射还可能由于局部加热而导致容器材料的劣化。此外,容器内的体波可以破坏性地干扰从衬底-流体界面辐射的体波,这然后干扰常规的基于SAW的微流体装置的操作。为了克服这些缺点,我们的目标是在声微流控器件中部署偏振转换。这里的目的是通过应用初始边界极化(BP)表面波来改进SAW驱动装置:一旦在微通道BP SAW外被激发,由于几乎没有阻尼的显著表面法向振动分量的存在,SAW通过聚合物容器。当到达通道内部时,由于波与位于衬底-流体界面处的适当散射体的相互作用,SAW极化从边界类型转换为垂直类型。通过这种受控的偏振转换在通道内产生的VP SAW最终将像在传统器件中那样驱动流体。通过实验和理论研究相结合,我们期望得到偏振转换效应的全面理解。然而,理论部分并不局限于本项目框架内的实验案例。模拟将提供一个更广泛的模式偏振转换的效果,预测它可以提供的优势,从而为进一步的研究活动铺平道路。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Dr. Hagen Schmidt其他文献

Dr. Hagen Schmidt的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

相似国自然基金

二氧化碳与高碳烷烃耦合转化多相催化体系研究
  • 批准号:
    22372180
  • 批准年份:
    2023
  • 资助金额:
    50.00 万元
  • 项目类别:
    面上项目
有机氟化合物功能基团的化学转换及其应用研究
  • 批准号:
    20772146
  • 批准年份:
    2007
  • 资助金额:
    28.0 万元
  • 项目类别:
    面上项目

相似海外基金

Fabrication of a highly selective photocatalyst for methane conversion by controlling photocatalyst surface structures combined with quasi-steady state operando spectroscopy
通过控制光催化剂表面结构结合准稳态操作光谱制备用于甲烷转化的高选择性光催化剂
  • 批准号:
    22KJ3098
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
The role of conformational dynamics of enveloped virus spike proteins in cell entry
有膜病毒刺突蛋白的构象动力学在细胞进入中的作用
  • 批准号:
    10711701
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
Impacts of Adaptive Coronavirus Evolution on Viral Membrane Fusion
冠状病毒适应性进化对病毒膜融合的影响
  • 批准号:
    10727448
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
Biophysical Model of Enzyme Catalysis: Conformational sub-states, solvent coupling and energy networks
酶催化的生物物理模型:构象亚态、溶剂耦合和能量网络
  • 批准号:
    10735359
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
Structural Mechanisms Of Genome Flow In Bacteriophage T4 And Their Biomedical Applications
噬菌体T4基因组流动的结构机制及其生物医学应用
  • 批准号:
    10635661
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
Conformational regulation of TGF-β activation by integrin αvβ6
整合素 αvβ6 对 TGF-β 激活的构象调节
  • 批准号:
    10655988
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
Understanding Essential Protein Dynamics through the Anharmonic Properties of Thermally Excited Vibrations
通过热激发振动的非简谐特性了解基本蛋白质动力学
  • 批准号:
    10566333
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
Structural basis of nicotinic acetylcholine receptor gating and toxin inhibition
烟碱乙酰胆碱受体门控和毒素抑制的结构基础
  • 批准号:
    10848770
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
Identification of Multi-modal Imaging Biomarkers for Early Prediction of MCI-AD Conversion via Multigraph Representation
通过多图表示识别多模态成像生物标志物以早期预测 MCI-AD 转换
  • 批准号:
    10510971
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
Real-time single particle analysis of reovirus-membrane interactions that drive infection
驱动感染的呼肠孤病毒-膜相互作用的实时单粒子分析
  • 批准号:
    10516836
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了