General approximation methods for multicriteria optimization problems
多标准优化问题的通用近似方法
基本信息
- 批准号:398572517
- 负责人:
- 金额:--
- 依托单位:
- 依托单位国家:德国
- 项目类别:Research Grants
- 财政年份:2018
- 资助国家:德国
- 起止时间:2017-12-31 至 2022-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
In many optimization problems, several incommensurable objective functions are to be optimized simultaneously. Such multicriteria optimization problems are based on optimality concepts that are induced by ordering relations. The predominant concept is the concept of Pareto optimality, which characterizes optimal solutions as minima (or maxima) with respect to the componentwise ordering. For many optimization problems, however, the set of Pareto-optimal solutions and the corresponding image set are very large and very difficult to compute exactly. Hence, our proposal aims at developing approximation methods for multicriteria optimization problems that (1) are applicable under weak assumptions, (2) yield a provably good approximation quality, and (3) possess a provable worst-case running time. The applicants contribute to this goal with their complementary skills in multicriteria optimization and approximation algorithms and are able to build on joint previous work. It is known that several of the existing methods for approximating multicriteria minimization problems cannot be transferred to maximization problems. Minimization and maximization problems require substantially different techniques. Additionally, the concept of Pareto optimality implies a significant difference in the level of difficulty between bicriteria problems and general multicriteria optimization problems. The structure of our proposal takes these findings into account and distinguishes between minimization and maximization problems as well as between problems with two and problems with more than two objective functions. Upon completion of this project, general approximation methods for these optimization problems will be ready to use. Moreover, the relationship among several single-criterion problems (belonging, e.g. to the fields of robust optimization, parametric optimization, or budget-constrained optimization) and related multicriteria problems will be studied and better understood. Thus, on the one hand, we aim at developing a "provably good" alternative to the current exact and heuristic methods for multicriteria optimization problems and, on the other hand, we intend to contribute significantly to the state-of-the-art in the theory of mathematical programming.
在许多优化问题中,需要同时优化多个不可通约的目标函数。这种多标准优化问题基于由排序关系导出的最优性概念。主要概念是帕累托最优性的概念,它将最优解描述为相对于分量排序的最小值(或最大值)。然而,对于许多优化问题,帕累托最优解的集合和相应的图像集非常大,并且很难精确计算。因此,我们的建议旨在开发多标准优化问题的近似方法,这些方法(1)在弱假设下适用,(2)产生可证明的良好近似质量,以及(3)拥有可证明的最坏情况运行时间。申请人通过多标准优化和近似算法方面的互补技能为这一目标做出贡献,并且能够在之前的联合工作的基础上继续发展。众所周知,用于逼近多标准最小化问题的几种现有方法不能转移到最大化问题。最小化和最大化问题需要截然不同的技术。此外,帕累托最优性的概念意味着双标准问题和一般多标准优化问题之间的难度水平存在显着差异。我们提案的结构考虑了这些发现,并区分了最小化和最大化问题以及两个目标函数的问题和两个以上目标函数的问题。该项目完成后,这些优化问题的通用近似方法将可供使用。此外,还将研究并更好地理解几个单准则问题(例如属于鲁棒优化、参数优化或预算约束优化领域)和相关多准则问题之间的关系。因此,一方面,我们的目标是开发一种“可证明良好”的替代方法来替代当前多标准优化问题的精确和启发式方法,另一方面,我们打算为数学规划理论的最新技术做出重大贡献。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Professor Dr. Stefan Ruzika其他文献
Professor Dr. Stefan Ruzika的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Professor Dr. Stefan Ruzika', 18)}}的其他基金
Exact Efficient Solution of Mixed Integer Programming Problems with Multiple Objective Functions
多目标函数混合整数规划问题的精确高效解
- 批准号:
258775501 - 财政年份:2014
- 资助金额:
-- - 项目类别:
Research Grants
Development and implementation of efficient decoding algorithms for linear block codes
线性分组码高效解码算法的开发和实现
- 批准号:
221415220 - 财政年份:2012
- 资助金额:
-- - 项目类别:
Research Grants
Approximation of Multi-Parametric Programming Problems
多参数规划问题的逼近
- 批准号:
508981269 - 财政年份:
- 资助金额:
-- - 项目类别:
Research Grants
相似国自然基金
非牛顿流方程(组)及其随机模型无穷维动力系统的研究
- 批准号:11126160
- 批准年份:2011
- 资助金额:3.0 万元
- 项目类别:数学天元基金项目
枢纽港选址及相关问题的算法设计
- 批准号:71001062
- 批准年份:2010
- 资助金额:17.6 万元
- 项目类别:青年科学基金项目
相似海外基金
Quantum Monte Carlo methods beyond the fixed-node approximation: excitonic effects and hydrogen compounds
超越固定节点近似的量子蒙特卡罗方法:激子效应和氢化合物
- 批准号:
2316007 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Standard Grant
Developments and Applications of Numerical Verification Methods for Finite Element Approximation of Differential Equations
微分方程有限元逼近数值验证方法的发展与应用
- 批准号:
23K03232 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Scientific Research (C)
Development and analysis of methods of approximation for NP-hard optimization problems
NP 困难优化问题的近似方法的开发和分析
- 批准号:
RGPIN-2021-03828 - 财政年份:2022
- 资助金额:
-- - 项目类别:
Discovery Grants Program - Individual
Dynamical Methods in Counting Questions and Diophantine Approximation
计数问题的动力学方法和丢番图近似
- 批准号:
2247713 - 财政年份:2022
- 资助金额:
-- - 项目类别:
Standard Grant
Surface PDE: a minimizing movement approach
表面 PDE:最小化运动方法
- 批准号:
22K03440 - 财政年份:2022
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Scientific Research (C)
Development and analysis of methods of approximation for NP-hard optimization problems
NP 困难优化问题的近似方法的开发和分析
- 批准号:
RGPIN-2021-03828 - 财政年份:2021
- 资助金额:
-- - 项目类别:
Discovery Grants Program - Individual
Dynamical Methods in Counting Questions and Diophantine Approximation
计数问题的动力学方法和丢番图近似
- 批准号:
2055364 - 财政年份:2021
- 资助金额:
-- - 项目类别:
Standard Grant
AF: Small: Online Algorithms and Approximation Methods in Learning
AF:小:学习中的在线算法和近似方法
- 批准号:
2008688 - 财政年份:2020
- 资助金额:
-- - 项目类别:
Standard Grant
Oscillons in Wakefulness and in Sleep: Discrete Structure of Hippocampal Brain Rhythms
清醒和睡眠中的振荡:海马脑节律的离散结构
- 批准号:
10596532 - 财政年份:2019
- 资助金额:
-- - 项目类别:
Oscillons in Wakefulness and in Sleep: Discrete Structure of Hippocampal Brain Rhythms
清醒和睡眠中的振荡:海马脑节律的离散结构
- 批准号:
10226824 - 财政年份:2019
- 资助金额:
-- - 项目类别: