Pathway engineering to optimize homology dependent therapeutic genome editing at the ABCA4 locus in photoreceptors

优化光感受器 ABCA4 位点同源依赖性治疗基因组编辑的途径工程

基本信息

项目摘要

Mutations in more than 200 retina-specific genes have been associated with inherited retinal diseases (IRD). Gene-based therapies, mostly in the form of gene addition or supplementation therapies using adeno-associated viral (AAV) vectors for gene delivery, have been developed for several IRDs. However, all so far targeted diseases are associated with mutations in genes small enough that the corresponding cDNA can be transferred in a single AAV. Unfortunately, many of the most frequently mutated genes such as ABCA4 exceed the AAV cargo size. ABCA4 mutations cause Stargardt disease, an early onset form of macular degeneration. As gene therapies are hampered for Stargardt disease due to ABCA4 sequence length, gene editing represents an attractive approach to correct the mutation in the genomes of the patient’s photoreceptors. Precise gene editing, to avoid unwanted and uncontrolled additional genomic alterations, requires homology-dependent double strand break (DSB) repair. As DSB pathways differ according to the cell cycle’s stage, in the first SPP2127 funding period, we have demonstrated that precise DSB repair also occurs in postmitotic neurons. In addition, DSB pathway modifications further improved precise repair. We have also identified human stem cell-derived neurons as an adequate in vitro testbed for testing all experimental parameters for precise genome editing. In addition, the DSB activity in healthy and diseased human and mouse photoreceptors is at work, unaltered and shows a high activity homology to human neurons. Our data suggest that mouse models represent sophisticated in vivo models for therapeutic gene editing.Based on our findings, we will assemble all molecular tools for DSB pathway engineering, gRNAs, ABCA4 templates and DSB reporter constructs, which will be systematically applied to human induced neurons to reveal the optimal parameters for precise repair. We will also generate an ABCA4 mutated human stem cell line that we will use for generating retinal organoids. These 3D human retinal organoids contain lots of photoreceptors that we will target by AAVs to deliver all necessary components for gene correction. We will combine imaging, transcriptomic, genomic and quantitative proteomic readouts to study the ABCA4 repair in depth. Ultimately, we will test our approach also in a Stargardt disease mouse model to correct the Abca4 gene in vivo. Treated mice will be studied using live imaging, behavior testing and electrophysiology. On- and potential off-target effects will be revealed by next generation sequencing. Demonstrating in vivo efficacy and safety as well as employing sophisticated human in vitro models for correcting the ABCA4 locus streamlines and paves the way for clinical translation. Our proof-of-concept study for precise gene editing including DSB pathway engineering will also be instructive for other therapeutic interventions for IRDs but also in general for genomic engineering of postmitotic neurons.
超过200种视网膜特异性基因的突变与遗传性视网膜疾病(IRD)有关。基于基因的治疗,主要是以基因添加或补充治疗的形式,使用腺相关病毒(AAV)载体进行基因递送,已开发用于几种IRD。然而,到目前为止,所有靶向疾病都与足够小的基因突变相关,使得相应的cDNA可以在单个AAV中转移。不幸的是,许多最频繁突变的基因如ABCA 4超过了AAV货物大小。ABCA4突变导致Stargardt病,一种早期发作的黄斑变性形式。由于ABCA4序列长度阻碍了Stargardt病的基因治疗,基因编辑代表了一种有吸引力的方法来纠正患者光感受器基因组中的突变。精确的基因编辑,以避免不必要的和不受控制的额外的基因组改变,需要同源依赖性双链断裂(DSB)修复。由于DSB途径根据细胞周期的阶段而不同,在第一个SPP 2127资助期,我们已经证明了精确的DSB修复也发生在有丝分裂后的神经元中。此外,DSB途径修饰进一步改善了精确修复。我们还确定了人类干细胞衍生的神经元作为测试精确基因组编辑的所有实验参数的适当体外测试平台。此外,在健康和患病的人类和小鼠光感受器中的DSB活性是在起作用的,未改变的,并且显示出与人类神经元的高活性同源性。我们的数据表明,小鼠模型代表了治疗性基因编辑的复杂体内模型。基于我们的研究结果,我们将组装DSB通路工程的所有分子工具,gRNA,ABCA 4模板和DSB报告基因构建体,将其系统地应用于人类诱导神经元,以揭示精确修复的最佳参数。我们还将产生一个ABCA4突变的人类干细胞系,我们将用于产生视网膜类器官。这些3D人类视网膜类器官含有大量的光感受器,我们将通过AAV靶向这些光感受器,以提供基因校正所需的所有成分。我们将结合联合收割机成像,转录组学,基因组学和定量蛋白质组学读数,深入研究ABCA 4修复。最终,我们还将在Stargardt病小鼠模型中测试我们的方法,以在体内纠正Abca4基因。将使用活体成像、行为测试和电生理学研究经处理的小鼠。下一代测序将揭示靶向效应和潜在的脱靶效应。证明体内功效和安全性以及采用复杂的人类体外模型来校正ABCA 4基因座简化并为临床转化铺平道路。我们对精确基因编辑(包括DSB通路工程)的概念验证研究也将对IRD的其他治疗干预措施具有指导意义,而且通常对有丝分裂后神经元的基因组工程也具有指导意义。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Professor Dr. Volker Busskamp, Ph.D.其他文献

Professor Dr. Volker Busskamp, Ph.D.的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Professor Dr. Volker Busskamp, Ph.D.', 18)}}的其他基金

Laser System for Optogenetic Stimulation for the subcellular investigation of Neural Networks
用于神经网络亚细胞研究的光遗传学刺激激光系统
  • 批准号:
    402988941
  • 财政年份:
    2018
  • 资助金额:
    --
  • 项目类别:
    Research Grants
Maintaining retinal ganglion cells within human retinal organoids by implementing a vascular system.
通过实施血管系统来维持人视网膜类器官内的视网膜神经节细胞。
  • 批准号:
    531985111
  • 财政年份:
  • 资助金额:
    --
  • 项目类别:
    Research Grants

相似国自然基金

软骨调节素调控BMSCs骨和软骨双向分化平衡的研究
  • 批准号:
    81272128
  • 批准年份:
    2012
  • 资助金额:
    70.0 万元
  • 项目类别:
    面上项目
Frontiers of Environmental Science & Engineering
  • 批准号:
    51224004
  • 批准年份:
    2012
  • 资助金额:
    20.0 万元
  • 项目类别:
    专项基金项目
Chinese Journal of Chemical Engineering
  • 批准号:
    21224004
  • 批准年份:
    2012
  • 资助金额:
    20.0 万元
  • 项目类别:
    专项基金项目
基于脂肪干细胞的同种异体肌腱缺损修复及机制
  • 批准号:
    81101359
  • 批准年份:
    2011
  • 资助金额:
    22.0 万元
  • 项目类别:
    青年科学基金项目
Chinese Journal of Chemical Engineering
  • 批准号:
    21024805
  • 批准年份:
    2010
  • 资助金额:
    20.0 万元
  • 项目类别:
    专项基金项目
脂肪来源干细胞诱导尿路上皮细胞及其机制的研究
  • 批准号:
    81070605
  • 批准年份:
    2010
  • 资助金额:
    30.0 万元
  • 项目类别:
    面上项目
Ihh在组织工程骨构建中作用和机制研究
  • 批准号:
    30973069
  • 批准年份:
    2009
  • 资助金额:
    34.0 万元
  • 项目类别:
    面上项目
Leydig干细胞纯化、扩增及雄激素分泌组织构建
  • 批准号:
    30970736
  • 批准年份:
    2009
  • 资助金额:
    30.0 万元
  • 项目类别:
    面上项目
预构血管化支架以构建大体积岛状组织工程化脂肪瓣的实验研究
  • 批准号:
    30901566
  • 批准年份:
    2009
  • 资助金额:
    19.0 万元
  • 项目类别:
    青年科学基金项目
人脐血间充质干细胞成骨潜能亚群的特异性分子标志
  • 批准号:
    30800232
  • 批准年份:
    2008
  • 资助金额:
    20.0 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Implementation of an impact assessment tool to optimize responsible stewardship of genomic data in the cloud
实施影响评估工具以优化云中基因组数据的负责任管理
  • 批准号:
    10721762
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
A Systems Engineering Approach to Optimize Pediatric Medication Safety
优化儿科用药安全的系统工程方法
  • 批准号:
    10628555
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
Systems analysis and improvement to optimize opioid use disorder care quality and continuity for patients exiting jail (SAIA-MOUD).
系统分析和改进,以优化出狱患者的阿片类药物使用障碍护理质量和连续性 (SAIA-MOUD)。
  • 批准号:
    10832930
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
Developing Active Stimulation and Monitoring Technologies to Optimize Pain and Nociception Management During Regional Anesthesia, General Anesthesia, and Post-Operative Care
开发主动刺激和监测技术,以优化区域麻醉、全身麻醉和术后护理期间的疼痛和伤害感受管理
  • 批准号:
    10604993
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
A Novel computational approach to optimize Fontan and improve surgical predictability
一种优化 Fontan 并提高手术可预测性的新型计算方法
  • 批准号:
    10557238
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
A Novel computational approach to optimize Fontan and improve surgical predictability
一种优化 Fontan 并提高手术可预测性的新型计算方法
  • 批准号:
    10346020
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
CAREER: Better Together: Leveraging the Shared Commitment of Community Colleges and HBCUs to Optimize Black Engineering Student Pathways
职业:携手共进:利用社区学院和 HBCU 的共同承诺,优化黑人工程学生的道路
  • 批准号:
    2145961
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
RII Track-4:NSF Engineering mixed microbial communities & bioreactor configurations to optimize biotransformation processes for metal and metalloid bioremediation and biorecove
RII Track-4:NSF Engineering 混合微生物群落
  • 批准号:
    2131916
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Use of 3D Quantitative Optical Methods to Optimize Mebendazole Treatment of Ovarian Cancer
使用 3D 定量光学方法优化甲苯咪唑治疗卵巢癌
  • 批准号:
    10662191
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
Combining Bacterial Glycosylation Tools and Nanotechnology to Optimize Siglec Ligands for the Treatment of Allergy and Anaphylaxis
结合细菌糖基化工具和纳米技术来优化 Siglec 配体,用于治疗过敏和过敏反应
  • 批准号:
    10507766
  • 财政年份:
    2021
  • 资助金额:
    --
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了