Development of the agentive self: Critical components in the emerging ability of action prediction and goal anticipation
主动自我的发展:行动预测和目标预期新兴能力的关键组成部分
基本信息
- 批准号:402791933
- 负责人:
- 金额:--
- 依托单位:
- 依托单位国家:德国
- 项目类别:Priority Programmes
- 财政年份:2018
- 资助国家:德国
- 起止时间:2017-12-31 至 2022-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The abilities to control one’s own actions in a goal-related way and to understand the goals and intentions behind the actions of others are important aspects of the agentive self. Both aspects develop during infancy and depend on the so-far acquired own agentive experience. It has been hypothesized that cognitive representations of own actions are partially used to plan own actions and to understand the actions of others. However, when mapping observed motions onto cognitive action representations, challenging problems of correspondence, perspective, and motor inference need to be solved. Although a critical role of the mirror neuron system (MNS) is supposed, the actual encodings and computational processes involved as well as their ontogenetic development remain elusive. The planned project seeks to fill this explanatory gap by combining insights and further experimental evaluations from developmental psychology with machine learning-oriented cognitive modeling. This interdisciplinary collaboration promises benefits in a bidirectional manner: Developmental psychology will be augmented with a functional, computational model of the cognitive development of action understanding. Machine-learning and cognitive-systems research will profit from the identification of inductive biases that foster the emergence of action understanding. In eye-tracking and EEG studies with infants and driven by the modeling efforts, the project will assess in further detail which cues and cue combinations of agency (e.g. human visual appearance, self-propelledness, production of salient action-effects, own action experience) are most relevant for infants’ ability to anticipate the goals of observed actions. The computational models will combine our current biological-motion model with our theory of event-predictive cognition. The current model expects, for example, that perceptual highlighting the final goal will support anticipatory action observations. By modeling the concrete scenarios, we will also generate more concrete behavioral predictions. Overall, we expect to answer critical developmental and cognitive-science questions. For example, for which types of observed actions will eye-tracking- and EEG-derived signals for MNS activity be detectable? Do own action experiences or observations of others’ actions influence subsequent action understanding in infants of different ages? Can agency-cue augmentations facilitate the learning of computational models of action understanding? Thus, the project will contribute to the thematic focus of the SPP 2134 by interweaving predictions generated by (neuro-)cognitive modeling with insights from developmental psychology to foster understanding on how infants (i) plan and control own goal-related actions as well as (ii) anticipate action goals and infer the underlying intentions of others. Overall, the project will shed further light on the development of the agentive self, the MNS, and the resulting social competencies.
以与目标相关的方式控制自己的行为以及理解他人行为背后的目标和意图的能力是代理自我的重要方面。这两个方面都在婴儿期发展,并依赖于迄今为止获得的自己的代理经验。据推测,对自己行为的认知表征部分用于计划自己的行为和理解他人的行为。然而,当将观察到的运动映射到认知动作表征时,需要解决对应、视角和运动推理等具有挑战性的问题。虽然镜像神经元系统(MNS)被认为是一个关键的角色,但实际的编码和计算过程以及它们的个体发育仍然是难以捉摸的。计划中的项目试图通过将发展心理学的见解和进一步的实验评估与机器学习导向的认知建模相结合来填补这一解释空白。这种跨学科的合作有望以双向的方式带来好处:发展心理学将得到一个功能性的、行动理解认知发展的计算模型的增强。机器学习和认知系统研究将受益于归纳偏见的识别,归纳偏见促进了行动理解的出现。在对婴儿进行的眼动追踪和脑电图研究中,在建模工作的推动下,该项目将进一步详细评估哪些线索和线索组合的代理(例如人类视觉外观、自我推进性、显著动作效果的产生、自己的动作经验)与婴儿预测观察到的动作目标的能力最相关。计算模型将把我们目前的生物运动模型与我们的事件预测认知理论结合起来。例如,目前的模型期望,强调最终目标的感性将支持预期行动观察。通过对具体场景进行建模,我们还将生成更具体的行为预测。总的来说,我们希望回答关键的发展和认知科学问题。例如,对于观察到的哪些类型的动作,眼动追踪和脑电图衍生的MNS活动信号将被检测到?不同年龄婴儿自身的行为经历或对他人行为的观察是否影响后续的行为理解?代理线索增强能促进行为理解计算模型的学习吗?因此,该项目将通过将(神经)认知模型产生的预测与发展心理学的见解相结合,促进对婴儿如何(i)计划和控制自己的目标相关行动以及(ii)预测行动目标并推断他人潜在意图的理解,从而为SPP 2134的主题重点做出贡献。总体而言,该项目将进一步阐明代理自我、MNS以及由此产生的社会能力的发展。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Professor Dr. Martin Butz其他文献
Professor Dr. Martin Butz的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Professor Dr. Martin Butz', 18)}}的其他基金
Sich selbst entwickelndes, adaptives Verhalten in künstlichen kognitiven Lernsystemen basierend auf selbstorganisierenden, sensomotorischen Körperwelten
基于自组织、感觉运动身体世界的人工认知学习系统中的自我发展、适应性行为
- 批准号:
48677251 - 财政年份:2007
- 资助金额:
-- - 项目类别:
Independent Junior Research Groups
DeepSelf: Emergence of Event-Predictive Agency in Robots
DeepSelf:机器人中事件预测机构的出现
- 批准号:
467045002 - 财政年份:
- 资助金额:
-- - 项目类别:
Priority Programmes
Interplay of amodal and modal encodings underlying directional space-metric associations
方向空间度量关联下的非模态和模态编码的相互作用
- 批准号:
422445168 - 财政年份:
- 资助金额:
-- - 项目类别:
Research Units
Machine Learning for improved understanding of L-A processes and feedbacks
机器学习可提高对 L-A 过程和反馈的理解
- 批准号:
533953145 - 财政年份:
- 资助金额:
-- - 项目类别:
Research Units
相似海外基金
A novel programme: Agentive here-and-now interaction in persons with dementia
一项新颖的计划:痴呆症患者此时此刻的主动互动
- 批准号:
ES/X006522/1 - 财政年份:2022
- 资助金额:
-- - 项目类别:
Research Grant














{{item.name}}会员




