DeepSelf: Emergence of Event-Predictive Agency in Robots
DeepSelf:机器人中事件预测机构的出现
基本信息
- 批准号:467045002
- 负责人:
- 金额:--
- 依托单位:
- 依托单位国家:德国
- 项目类别:Priority Programmes
- 财政年份:
- 资助国家:德国
- 起止时间:
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
The “experience of controlling one’s own actions, and, through them, events in the outside world” (Haggard & Chambon 2012) lies at the heart of the Sense of Agency. While forms of agency may be found in direct encodings of sensorimotor experiences, we propose that more explicit, accessible forms require abstractions away from the actual sensorimotor dynamics, i.e. events. The result may be called an agentive self, which can become ‘aware’ of its own experiences as well as the consequences of its actions in the world.We aim at revealing critical computational components, including learning and processing biases, for the development of an agentive self in robots. Over the three years, we aim at first modeling spatial action-effect binding, to implement a simple form of agency. We will then enhance the architecture to model event-effect anticipations, focusing on the anticipatory crossmodal congruency paradigm, which shows how our minds project our body parts onto future positions before even starting to execute the required motion to reach the position. Finally, we will tackle tool-mediated event-effect anticipations, which we expect to first show in experiments with human participants.Our computational model takes ideomotor theory, comparator models, and the free energy principle (active inference) as the point of departure. Over recent years, including research work within the SPP’s first funding period, we have implemented these principles in various artificial systems and robots. Our deep active inference model enables robots to learn generative models from continuous raw sensory information and to plan in a model-predictive manner. Furthermore, inspired by our contribution to theories of event-predictive cognition, we have also implemented event-predictive systems, which convert relative distances and orientations, into event encodings, enabling agents to plan goal-directly on an event scale.By combining our expertise in adaptive robotics and deep artificial neural networks (Donders) with our expertise in experimental cognitive psychology and neuro-cognitive modeling (Tübingen), we aim to isolate “the mechanisms and prerequisites that allow an [artificial] agent to develop a self” and the scrutinization of the “roles of agency”, fostering the development of more effective event control. Moreover, we expect to identify core mechanisms of self-plasticity in tool-use. Meanwhile, we envisage improving the robot’s agentive processing abilities via the development of compact event-predictive encodings. Beyond the actual project, we expect to contribute to systems that can explain their influence on the environment and that learn to identify its causality. While we will focus on individual robots in this project, we hope that the realization of an agentive self will also facility the development of social interaction competencies – considerations which we hope to discuss with other SPP projects during the second funding phase.
“控制自己的行为以及通过这些行为控制外部世界事件的体验”(Haggard & Chambon 2012)是代理感的核心。虽然代理的形式可以在感觉运动体验的直接编码中找到,但我们建议更明确、更容易理解的形式需要从实际的感觉运动动力学(即事件)中抽象出来。结果可以称为主动自我,它可以“意识到”自己的经历以及其在世界上的行为的后果。我们的目标是揭示关键的计算组件,包括学习和处理偏差,以促进机器人中主动自我的发展。在过去的三年里,我们的目标是首先对空间动作-效果绑定进行建模,以实现一种简单的代理形式。然后,我们将增强架构以对事件效果预期进行建模,重点关注预期跨模态一致性范式,该范式展示了我们的思想如何在开始执行到达该位置所需的动作之前将我们的身体部位投射到未来的位置。最后,我们将解决工具介导的事件效应预期,我们希望首先在人类参与者的实验中展示这一点。我们的计算模型以观念运动理论、比较器模型和自由能原理(主动推理)为出发点。近年来,包括SPP第一个资助期间的研究工作,我们已经在各种人工系统和机器人中实施了这些原则。我们的深度主动推理模型使机器人能够从连续的原始感官信息中学习生成模型,并以模型预测的方式进行规划。此外,受我们对事件预测认知理论贡献的启发,我们还实现了事件预测系统,将相对距离和方向转换为事件编码,使代理能够直接在事件规模上规划目标。通过将我们在自适应机器人和深度人工神经网络(Donders)方面的专业知识与我们在实验认知心理学和神经认知建模方面的专业知识相结合 (蒂宾根),我们的目标是分离“允许[人工]代理发展自我的机制和先决条件”以及对“代理角色”的审查,促进更有效的事件控制的发展。此外,我们期望确定工具使用中自塑性的核心机制。同时,我们设想通过开发紧凑的事件预测编码来提高机器人的代理处理能力。除了实际项目之外,我们希望为能够解释其对环境的影响并学会识别其因果关系的系统做出贡献。虽然我们在这个项目中将重点关注个体机器人,但我们希望自主自我的实现也将促进社交互动能力的发展——我们希望在第二阶段融资期间与其他 SPP 项目讨论这些考虑因素。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Professor Dr. Martin Butz其他文献
Professor Dr. Martin Butz的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Professor Dr. Martin Butz', 18)}}的其他基金
Development of the agentive self: Critical components in the emerging ability of action prediction and goal anticipation
主动自我的发展:行动预测和目标预期新兴能力的关键组成部分
- 批准号:
402791933 - 财政年份:2018
- 资助金额:
-- - 项目类别:
Priority Programmes
Sich selbst entwickelndes, adaptives Verhalten in künstlichen kognitiven Lernsystemen basierend auf selbstorganisierenden, sensomotorischen Körperwelten
基于自组织、感觉运动身体世界的人工认知学习系统中的自我发展、适应性行为
- 批准号:
48677251 - 财政年份:2007
- 资助金额:
-- - 项目类别:
Independent Junior Research Groups
Interplay of amodal and modal encodings underlying directional space-metric associations
方向空间度量关联下的非模态和模态编码的相互作用
- 批准号:
422445168 - 财政年份:
- 资助金额:
-- - 项目类别:
Research Units
Machine Learning for improved understanding of L-A processes and feedbacks
机器学习可提高对 L-A 过程和反馈的理解
- 批准号:
533953145 - 财政年份:
- 资助金额:
-- - 项目类别:
Research Units
相似国自然基金
Exposing Verifiable Consequences of the Emergence of Mass
- 批准号:12135007
- 批准年份:2021
- 资助金额:313 万元
- 项目类别:重点项目
拓扑动力系统中熵和emergence理论的研究
- 批准号:
- 批准年份:2021
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
NEM-EMERGE: An integrated set of novel approaches to counter the emergence and proliferation of invasive and virulent soil-borne nematodes
NEM-EMERGE:一套综合的新方法来对抗入侵性和剧毒土传线虫的出现和扩散
- 批准号:
10080598 - 财政年份:2024
- 资助金额:
-- - 项目类别:
EU-Funded
Understanding Innate Immune Evasion as a Checkpoint for Viral Emergence
了解先天免疫逃避作为病毒出现的检查点
- 批准号:
MR/X033392/1 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Fellowship
CAREER: Emergence of in-liquid structures in metallic alloys by nucleation and growth
职业:通过成核和生长在金属合金中出现液态结构
- 批准号:
2333630 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Continuing Grant
Collaborative Research: Processes Which Guide Imperial Emergence
合作研究:指导帝国崛起的过程
- 批准号:
2345160 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Standard Grant
Collaborative Research: Processes Which Guide Imperial Emergence
合作研究:指导帝国崛起的过程
- 批准号:
2345161 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Standard Grant
Predicting emergence risk of future zoonotic viruses through computational learning
通过计算学习预测未来人畜共患病毒的出现风险
- 批准号:
MR/X019616/1 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Fellowship
Center: National Synthesis Center for Emergence in the Molecular and Cellular Sciences
中心:国家分子与细胞科学新兴综合中心
- 批准号:
2335029 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Cooperative Agreement
An integrated set of novel approaches to counter the emergence and proliferation of invasive and virulent soil-borne nematodes
一套综合的新方法来对抗入侵性和剧毒土传线虫的出现和扩散
- 批准号:
10093554 - 财政年份:2024
- 资助金额:
-- - 项目类别:
EU-Funded
Emergence, adaptation and cognitive cost in collective cognitive behavior
集体认知行为中的出现、适应和认知成本
- 批准号:
24K15688 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Scientific Research (C)
NSF PRFB FY 2023: Understanding the ecological drivers and genomic mechanisms of wildlife viral emergence caused by deforestation in Cambodia
NSF PRFB 2023 财年:了解柬埔寨森林砍伐导致野生动物病毒出现的生态驱动因素和基因组机制
- 批准号:
2303760 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Fellowship Award