Development of High-precision Thermosphere Models for Improving Precise Orbit Determination of Low-Earth-Orbiting Satellites (TIPOD)

开发高精度热层模型以提高低地球轨道卫星(TIPOD)的精确定轨能力

基本信息

项目摘要

The motion of a satellite depends on gravitational and non-gravitational accelerations. A major problem in precise orbit determination (POD) of low-Earth orbiting (LEO) objects such as satellites or space debris is modelling the thermospheric drag. It is the largest non-gravitational acceleration for satellites with altitudes lower than 1000 km and decelerates their movement. For example, the contribution of drag to the total acceleration of a LEO satellite with an altitude of around 350 km equals approximately the contribution of the Earth’s flattening. In case of the Swarm satellites with an altitude of around 460 km a non-consideration of the drag within the POD would cause an error of around 3 meters per revolution in the along-track direction. Therefore, the knowledge of the thermospheric density is of crucial importance in many geo-scientific applications such as remote sensing, satellite altimetry and satellite gravity missions, where orbits with an accuracy of a few millimetres are required. Yet, today’s usage of thermosphere models, often based on data collected at times with different solar conditions, may provide only limited accuracy in POD. Therefore, TIPOD aims on improving the POD of LEO satellites by applying further developed thermosphere models. For this purpose, data from various satellite tracking techniques (SLR, GNSS and DORIS) shall be assimilated into a physical coupled thermosphere-ionosphere model. Since these data are rather heterogeneous, an empirical model will be interposed between the observations and the physical model in the first step of the project. After calibrating the empirical model, its output will be assimilated into the physical model within the second step of the project and a number of selected physical key parameters will be calibrated. TIPOD addresses two main scientific questions: (1) how close can the physical model recover the empirical one within the investigated time span of recent satellite missions such as GRACE and Swarm, and (2) how far can the precise orbit determination be improved by the application of both models? The ultimate goal of TIPOD is to assimilate the input tracking data directly into the physical model. The end-user product of TIPOD is a POD of LEO satellites such as the Swarm satellites, which will be disseminated to users through the IAG/GGOS Focus Area 4.
卫星的运动取决于重力加速度和非重力加速度。对卫星或空间碎片等低地球轨道物体进行精确定轨的一个主要问题是建立热层阻力模型。它是高度低于1000公里的卫星的最大非重力加速度,并使其运动减速。例如,阻力对高度约为350公里的低地轨道卫星的总加速度的贡献大约等于地球变平的贡献。在高度约为460 km的Swarm卫星的情况下,不考虑POD内的阻力将导致沿轨道方向每转约3米的误差。因此,了解热层密度对于遥感、卫星测高和卫星重力飞行任务等许多地球科学应用至关重要,因为这些应用需要精确到几毫米的轨道。然而,今天使用的热层模型,往往是基于在不同的太阳条件下收集的数据,可能只提供有限的准确性,在POD。因此,TIPOD旨在通过应用进一步开发的热层模型来改进低地轨道卫星的POD。为此目的,应将各种卫星跟踪技术(激光测距、全球导航卫星系统和DORIS)的数据纳入热层-电离层物理耦合模型。由于这些数据相当不均匀,在项目的第一步,将在观测和物理模型之间插入一个经验模型。在校准经验模型之后,其输出将在项目的第二步中被同化到物理模型中,并将校准一些选定的物理关键参数。TIPOD解决了两个主要的科学问题:(1)在最近的卫星任务,如GRACE和Swarm的调查时间跨度内,物理模型恢复的经验模型有多接近?(2)两种模型的应用能在多大程度上提高精确的轨道确定?TIPOD的最终目标是将输入的跟踪数据直接同化到物理模型中。TIPOD的最终用户产品是Swarm卫星等低地球轨道卫星的POD,将通过IAG/GGOS重点领域4向用户传播。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Professor Dr. Urs Hugentobler其他文献

Professor Dr. Urs Hugentobler的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Professor Dr. Urs Hugentobler', 18)}}的其他基金

DORIS solutions improvement and combinations with other techniques of space geodesy
DORIS解决方案的改进以及与其他空间大地测量技术的结合
  • 批准号:
    267464059
  • 财政年份:
    2015
  • 资助金额:
    --
  • 项目类别:
    Research Grants
LEO orbit modeling improvement and application for GNSS and DORIS LEO satellites
GNSS和DORIS LEO卫星的LEO轨道改进和应用
  • 批准号:
    190787943
  • 财政年份:
    2011
  • 资助金额:
    --
  • 项目类别:
    Research Grants
Consistent dynamic satellite reference frames and terres-trial geodetic datum parameters
一致的动态卫星参考系和陆地大地基准参数
  • 批准号:
    199893089
  • 财政年份:
    2011
  • 资助金额:
    --
  • 项目类别:
    Research Units
Multi-Skalen-Ionosphärenmodell aus der Kombination moderner Satellitenverfahren (MuSIK)
结合现代卫星方法的多尺度电离层模型(MuSIK)
  • 批准号:
    177409213
  • 财政年份:
    2010
  • 资助金额:
    --
  • 项目类别:
    Research Grants
Time as observable in integrated ground and space-based GNSS analysis
综合地面和空基 GNSS 分析中可观测的时间
  • 批准号:
    513034573
  • 财政年份:
  • 资助金额:
    --
  • 项目类别:
    Research Units

相似国自然基金

High-precision force-reflected bilateral teleoperation of multi-DOF hydraulic robotic manipulators
  • 批准号:
    52111530069
  • 批准年份:
    2021
  • 资助金额:
    10 万元
  • 项目类别:
    国际(地区)合作与交流项目

相似海外基金

オリゴ糖代謝酵素の基質特異性解明及びPrecision Prebioticsの開発
阐明寡糖代谢酶的底物特异性并开发精准益生元
  • 批准号:
    24K14784
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Precision Dry Etching of 2D Materials: 2DETCH
2D 材料的精密干法蚀刻:2DETCH
  • 批准号:
    EP/Z531121/1
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Research Grant
Enabling precision engineering of complex chemical products for high value technology sectors.
为高价值技术领域实现复杂化学产品的精密工程。
  • 批准号:
    EP/X040992/1
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Research Grant
SBIR Phase II: Zero Trust Solution for Precision Medicine and Precision Health Data Exchanges
SBIR 第二阶段:精准医疗和精准健康数据交换的零信任解决方案
  • 批准号:
    2226026
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Cooperative Agreement
A novel precision-engineered microfluidic chip for wear particle research
一种用于磨损颗粒研究的新型精密设计微流控芯片
  • 批准号:
    DP240102971
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Discovery Projects
Precision Psychiatry for Compulsivity
强迫症的精准精神病学
  • 批准号:
    MR/Y011384/1
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Fellowship
関節リウマチにおけるPrecision medicine達成のための科学的根拠の確立
为实现类风湿关节炎精准医疗奠定科学基础
  • 批准号:
    24K11609
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
胆道癌における相同組換え修復欠損に基づいたprecision medicineの構築
基于胆道癌同源重组修复缺陷的精准医疗构建
  • 批准号:
    24K11926
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Piecing together the Neutrino Mass Puzzle in Search of New Particles with Precision Oscillation Experiments and Quantum Technologies
通过精密振荡实验和量子技术拼凑中微子质量难题以寻找新粒子
  • 批准号:
    ST/W003880/2
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Fellowship
Tuning Precision Fabricated Liquid Crystal Adsorbents - Toward Tailored Adsorption of Per- and Polyfluorinated Alkyl Substances
调整精密制造的液晶吸附剂 - 针对全氟和多氟烷基物质的定制吸附
  • 批准号:
    24K17729
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了