Confidence-based learning: establishing a novel form of learning without feedback
基于信心的学习:建立一种无需反馈的新颖学习形式
基本信息
- 批准号:403630675
- 负责人:
- 金额:--
- 依托单位:
- 依托单位国家:德国
- 项目类别:Research Grants
- 财政年份:2018
- 资助国家:德国
- 起止时间:2017-12-31 至 2022-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Theories of reinforcement learning explain fundamental characteristics of human learning and behaviour, but also how aberrancies in learning can lead to the manifestation of dysfunctional behavioural patterns and psychiatric diseases. However, a critical challenge for reinforcement learning accounts is that many forms of learning occur in the absence of external feedback and important aspects of psychiatric diseases are best characterized by self-reinforcing processes that do not depend on external feedback. Recently, theoretical progress and empirical findings in the field of perceptual learning have made the case for an intriguing extension of reinforcement learning, proposing that internal confidence in one’s own actions serves as a teaching signal when no external feedback is available. Moreover, it has been found that the computational principles and the neural underpinnings of such learning are highly similar to those of normative reinforcement learning based on external feedback. On this basis, the overarching goal of the present proposal is to 1) establish the generality of this novel form of learning at the behavioural and neurobiological level, and 2) to investigate interindividual differences in such learning in the paradigmatic case of proneness to anhedonia.In a first work package, we will investigate in two functional magnetic resonance imaging experiments whether the observed parallel between normative and confidence-based learning generalizes to the two most generic forms of reinforcement learning − classical and instrumental conditioning. The first experiment will examine whether the repeated pairing of a stimulus with induced levels of confidence in a distractor task leads to ‘confidence-based classical conditioning’, and thus to the behavioural, physiological and neurobiological effects known from normative classical conditioning. The second experiment will investigate confidence-based conditioning in an instrumental learning task, in which participants receive or do not receive external feedback. Using a novel confidence-based reinforcement learning model, we will test the hypothesis that confidence affects value representations by means of neurocomputational mechanisms known from normative instrumental conditioning.In a second work package we will investigate interindividual differences in confidence-based learning in a large general population sample recruited from the online marketplace Amazon Mechanical Turk. Adhering to a continuum view of psychiatric disease and using model-based mechanistic markers of confidence-based learning, we will test the hypothesis of a link between reduced confidence-based learning and proneness to anhedonia.Overall, the proposed project is expected to provide major insights into the fundamental behavioural and neurobiological nature of confidence-based learning and its significance for a key psychiatric symptom dimension, anhedonia.
强化学习理论解释了人类学习和行为的基本特征,但也解释了学习中的异常如何导致功能失调的行为模式和精神疾病的表现。然而,强化学习理论面临的一个关键挑战是,许多形式的学习是在没有外部反馈的情况下发生的,精神疾病的重要方面最好的特征是不依赖于外部反馈的自我强化过程。最近,感知学习领域的理论进展和实证发现为强化学习提供了一个有趣的扩展,提出当没有外部反馈可用时,对自己行为的内部信心可以作为教学信号。此外,研究发现,这种学习的计算原理和神经基础与基于外部反馈的规范强化学习高度相似。在此基础上,本研究的首要目标是:1)在行为和神经生物学水平上建立这种新型学习形式的普遍性;2)在快感缺乏倾向的典型案例中研究这种学习的个体间差异。在第一个工作包中,我们将在两个功能性磁共振成像实验中研究观察到的规范学习和基于信心的学习之间的相似性是否可以推广到两种最常见的强化学习形式——经典条件反射和工具条件反射。第一个实验将检验在分心任务中,刺激与诱导的信心水平的重复配对是否会导致“基于信心的经典条件反射”,从而导致从规范经典条件反射中已知的行为、生理和神经生物学效应。第二个实验将调查基于信心的条件作用在工具性学习任务中,参与者接受或不接受外部反馈。使用一种新的基于信心的强化学习模型,我们将通过规范工具条件反射中已知的神经计算机制来检验信心影响价值表征的假设。在第二个工作包中,我们将调查从在线市场亚马逊土耳其机械招募的大型一般人群样本中基于信心的学习的个体间差异。坚持精神疾病的连续性观点,并使用基于模型的基于信心的学习机制标记,我们将检验基于信心的学习减少与快感缺乏症倾向之间联系的假设。总的来说,拟议的项目有望为基于自信的学习的基本行为和神经生物学性质及其对关键精神症状维度快感缺乏症的重要性提供重要见解。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Dr. Marcus Rothkirch, since 2/2022其他文献
Dr. Marcus Rothkirch, since 2/2022的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似国自然基金
Data-driven Recommendation System Construction of an Online Medical Platform Based on the Fusion of Information
- 批准号:
- 批准年份:2024
- 资助金额:万元
- 项目类别:外国青年学者研究基金项目
Exploring the Intrinsic Mechanisms of CEO Turnover and Market Reaction: An Explanation Based on Information Asymmetry
- 批准号:W2433169
- 批准年份:2024
- 资助金额:万元
- 项目类别:外国学者研究基金项目
Incentive and governance schenism study of corporate green washing behavior in China: Based on an integiated view of econfiguration of environmental authority and decoupling logic
- 批准号:
- 批准年份:2024
- 资助金额:万元
- 项目类别:外国学者研究基金项目
含Re、Ru先进镍基单晶高温合金中TCP相成核—生长机理的原位动态研究
- 批准号:52301178
- 批准年份:2023
- 资助金额:30.00 万元
- 项目类别:青年科学基金项目
NbZrTi基多主元合金中化学不均匀性对辐照行为的影响研究
- 批准号:12305290
- 批准年份:2023
- 资助金额:30.00 万元
- 项目类别:青年科学基金项目
眼表菌群影响糖尿病患者干眼发生的人群流行病学研究
- 批准号:82371110
- 批准年份:2023
- 资助金额:49.00 万元
- 项目类别:面上项目
镍基UNS N10003合金辐照位错环演化机制及其对力学性能的影响研究
- 批准号:12375280
- 批准年份:2023
- 资助金额:53.00 万元
- 项目类别:面上项目
CuAgSe基热电材料的结构特性与构效关系研究
- 批准号:22375214
- 批准年份:2023
- 资助金额:50.00 万元
- 项目类别:面上项目
A study on prototype flexible multifunctional graphene foam-based sensing grid (柔性多功能石墨烯泡沫传感网格原型研究)
- 批准号:
- 批准年份:2020
- 资助金额:20 万元
- 项目类别:
基于大数据定量研究城市化对中国季节性流感传播的影响及其机理
- 批准号:82003509
- 批准年份:2020
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
相似海外基金
CAREER: Data-Enabled Neural Multi-Step Predictive Control (DeMuSPc): a Learning-Based Predictive and Adaptive Control Approach for Complex Nonlinear Systems
职业:数据支持的神经多步预测控制(DeMuSPc):一种用于复杂非线性系统的基于学习的预测和自适应控制方法
- 批准号:
2338749 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Standard Grant
CRII: OAC: A Compressor-Assisted Collective Communication Framework for GPU-Based Large-Scale Deep Learning
CRII:OAC:基于 GPU 的大规模深度学习的压缩器辅助集体通信框架
- 批准号:
2348465 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Standard Grant
CAREER: Mitigating the Lack of Labeled Training Data in Machine Learning Based on Multi-level Optimization
职业:基于多级优化缓解机器学习中标记训练数据的缺乏
- 批准号:
2339216 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Continuing Grant
Investigating the potential for developing self-regulation in foreign language learners through the use of computer-based large language models and machine learning
通过使用基于计算机的大语言模型和机器学习来调查外语学习者自我调节的潜力
- 批准号:
24K04111 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Scientific Research (C)
CAREER: Facilitating Autonomy of Robots Through Learning-Based Control
职业:通过基于学习的控制促进机器人的自主性
- 批准号:
2422698 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Continuing Grant
STTR Phase II: Optimized manufacturing and machine learning based automation of Endothelium-on-a-chip microfluidic devices for drug screening applications.
STTR 第二阶段:用于药物筛选应用的片上内皮微流体装置的优化制造和基于机器学习的自动化。
- 批准号:
2332121 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Cooperative Agreement
SHF: Small: Hardware-Software Co-design for Privacy Protection on Deep Learning-based Recommendation Systems
SHF:小型:基于深度学习的推荐系统的隐私保护软硬件协同设计
- 批准号:
2334628 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Standard Grant
SBIR Phase I: Lightweight Learning-based Camera Image Signal Processing (ISP) for Photon-Limited Imaging
SBIR 第一阶段:用于光子限制成像的轻量级基于学习的相机图像信号处理 (ISP)
- 批准号:
2335309 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Standard Grant
A Novel Contour-based Machine Learning Tool for Reliable Brain Tumour Resection (ContourBrain)
一种基于轮廓的新型机器学习工具,用于可靠的脑肿瘤切除(ContourBrain)
- 批准号:
EP/Y021614/1 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Research Grant
Computational and neural signatures of interoceptive learning in anorexia nervosa
神经性厌食症内感受学习的计算和神经特征
- 批准号:
10824044 - 财政年份:2024
- 资助金额:
-- - 项目类别: