Establishment of the circuit of the mushroom body calyx during development

蘑菇体花萼发育过程中回路的建立

基本信息

项目摘要

The correct evaluation of sensory information, the definition of an accurate behavioral goal, the coordinated control of movement, all depend upon carefully designed flows of information within the nervous system – guaranteed by the architecture of neuronal networks. During development, neurons migrate to defined target locations and differentiate their complex and neuron-type specific axon and dendrites. Having reached their appropriate target region, they face the major tasks of identifying their correct partners among many and of generating connections in appropriate numbers. With the level of resolution provided by electron microscopy-based reconstructions of neuronal circuits, the complexity of local microcircuit architecture has recently emerged even more clearly. Within the mushroom body (MB) calyx, sensory information is processed to elicit a sparse code of response by the Kenyon cells (KCs). Our ongoing work, funded by the FOR2705, indicates that this fundamental property of the MB (and of many circuits across evolution) relies on the architecture of the main structural unit of the MB calyx, the microglomeruli (MGs). We concentrate on the processing of olfactory information and have described how, within each MG, the axonal bouton of an olfactory projection neuron is surrounded by the dendrites of many KCs to form a spherical structure of highly interconnected elements. With the level of description we produced, MGs seem an ideal system to address how specific connections are formed during development. However, virtually nothing is known about how MGs arise. We propose here to reveal key molecular factors and the fundamental logic of how these complexes assemble by performing a classic genetic screen. Using transcriptomic data, we have defined a set of surface molecules expressed by projection neurons or by KCs as candidates for supporting neuron-neuron recognition in the calyx. We will screen by RNAi- mediated knock-down for conditions in which the MGs, the projection neuron boutons, the KC dendrites or their synaptic contacts are not correctly formed, maintained or positioned. The best molecular candidates will be thoroughly analyzed with a combination of genetics, high-resolution imaging and cell biology techniques. To support these studies and help clarifying how mutant phenotypes emerged, we will investigate with time-lapse imaging the dynamic behavior of individual axons and dendrites during development and address the impact of activity during the process. Finally, in addition to the local microcircuits represented by the MGs, we will address also the logic of the global organization of the MB calyx, by generating a map of sensory representation. We will address how this map emerges and its stereotypy among individuals. Taken together, we will lay the ground of the logic of developmental assembly of a key circuit in the adult fly brain – in the context of the functional properties of the completed circuit.
对感觉信息的正确评估、对准确行为目标的定义、对运动的协调控制,都依赖于神经系统内精心设计的信息流--由神经元网络的结构来保证。在发育过程中,神经元迁移到确定的目标位置,并分化出复杂的和神经元类型特异性的轴突和树突。在到达适当的目标区域后,他们面临的主要任务是在众多伙伴中确定正确的伙伴,并建立适当数量的联系。随着电子显微镜重建神经元回路所提供的分辨率水平,局部微回路结构的复杂性最近变得更加清晰。在蘑菇体(MB)花萼内,感觉信息被处理以引起凯尼恩细胞(KCs)的稀疏反应代码。我们正在进行的工作,由FOR 2705资助,表明MB(以及进化过程中的许多电路)的这种基本特性依赖于MB花萼的主要结构单元微肾小球(MG)的结构。 我们专注于嗅觉信息的处理,并已描述了如何在每个MG内,嗅觉投射神经元的轴突终扣被许多KC的树突包围,以形成高度互连的元件的球形结构。根据我们的描述水平,MG似乎是一个理想的系统,可以解决在开发过程中如何形成特定的连接。然而,几乎没有人知道MG是如何产生的。我们建议在这里揭示关键的分子因素和这些复合物如何组装的基本逻辑,通过执行一个经典的遗传筛选。使用转录组数据,我们已经定义了一组表面分子表达的投射神经元或KC作为候选人支持神经元-神经元识别的花萼。我们将通过RNAi介导的敲低筛选MG、投射神经元终扣、KC树突或其突触接触未正确形成、维持或定位的条件。最好的分子候选人将通过遗传学,高分辨率成像和细胞生物学技术的组合进行彻底分析。为了支持这些研究并帮助澄清突变表型是如何出现的,我们将利用延时成像研究发育过程中单个轴突和树突的动态行为,并解决该过程中活动的影响。最后,除了由MG代表的局部微电路之外,我们还将通过生成感觉表征的地图来解决MB萼的全球组织的逻辑。我们将讨论这个地图是如何出现的,以及它在个体中的刻板印象。两者合计,我们将奠定基础的逻辑发展组装的关键电路在成年苍蝇的大脑-在完成电路的功能特性的背景下。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Professorin Dr. Gaia Tavosanis其他文献

Professorin Dr. Gaia Tavosanis的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Professorin Dr. Gaia Tavosanis', 18)}}的其他基金

Formation of neuronal dendrite branches: the role of actin nucleators
神经元树突分支的形成:肌动蛋白成核剂的作用
  • 批准号:
    170387504
  • 财政年份:
    2010
  • 资助金额:
    --
  • 项目类别:
    Priority Programmes
Mechanisms underlying dendritic differentiation in Drosophila
果蝇树突分化的机制
  • 批准号:
    5409953
  • 财政年份:
    2003
  • 资助金额:
    --
  • 项目类别:
    Priority Programmes
Identification and characterisation of genes required for asymmetric crescent formation in Drosophila neuroblasts
果蝇成神经细胞不对称新月体形成所需基因的鉴定和表征
  • 批准号:
    5270980
  • 财政年份:
    2000
  • 资助金额:
    --
  • 项目类别:
    Research Fellowships

相似国自然基金

脊髓新鉴定SNAPR神经元相关环路介导SCS电刺激抑制恶性瘙痒
  • 批准号:
    82371478
  • 批准年份:
    2023
  • 资助金额:
    48.00 万元
  • 项目类别:
    面上项目
弓状核介导慢性疼痛引起动机下降的神经环路机制及rTMS干预研究
  • 批准号:
    82371536
  • 批准年份:
    2023
  • 资助金额:
    49.00 万元
  • 项目类别:
    面上项目
听觉刺激特异性调控情绪的神经环路机制研究
  • 批准号:
    82371516
  • 批准年份:
    2023
  • 资助金额:
    49.00 万元
  • 项目类别:
    面上项目
外周免疫刺激诱发的初级视觉感觉环路重构
  • 批准号:
    91132712
  • 批准年份:
    2011
  • 资助金额:
    80.0 万元
  • 项目类别:
    重大研究计划

相似海外基金

Characterizing the Sensorimotor Transformation in Drosophila olfactory system
果蝇嗅觉系统感觉运动转化的表征
  • 批准号:
    10752470
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
Imaging neuromodulation in the brain
大脑神经调节成像
  • 批准号:
    10543730
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
Neural circuits that mediate computation of salience
介导显着性计算的神经回路
  • 批准号:
    10417625
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
Alcohol-Induced Alternative Splicing in Drosophila Memory Circuits
果蝇记忆电路中酒精诱导的选择性剪接
  • 批准号:
    10677574
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
Dopaminergic circuit modulation of learning and arousal-mediated memory enhancement
学习的多巴胺能回路调节和唤醒介导的记忆增强
  • 批准号:
    10731978
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
Neural circuits that mediate computation of salience
介导显着性计算的神经回路
  • 批准号:
    10599214
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
A serotonergic circuit controlling the circadian rhythm in Drosophila olfactory learning
控制果蝇嗅觉学习昼夜节律的血清素回路
  • 批准号:
    10509755
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
Neural circuit mechanisms for multisensory associative learning
多感觉联想学习的神经回路机制
  • 批准号:
    10524400
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
Dissecting the neural substrates of interhemispheric integration in the larval Drosophila olfactory system
解剖果蝇幼虫嗅觉系统半球间整合的神经基础
  • 批准号:
    10536196
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
Dissecting the neural substrates of interhemispheric integration in the larval Drosophila olfactory system
解剖果蝇幼虫嗅觉系统半球间整合的神经基础
  • 批准号:
    10668275
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了