Melt dynamics in remote laser material processing

远程激光材料加工中的熔体动力学

基本信息

项目摘要

Remote Fusion Cutting (RFC) or Front Pressure Cutting has high potential for various industrial applications compared to conventional gas-assisted cutting processes due to its resource efficiency and its more flexible feasibility in industry. Stable process layout, however, is crucial to make use of this potential. Currently, the process behaves often instable regarding changes of parameters and the process understanding needed to explain or resolve this behavior is lacking.Therefore, in the proposed project the process understanding necessary for stable process layout will be developed. In order to understand the process comprehensively, not only the process of RFC, but also the borders of its process window, i. e. the transitions to the welding regime will be investigated. In the first step, the analysis algorithms necessary for the experiments and the already developed simulation model will be adapted to the process, improved and verified. Then, the process will be examined experimentally and simulatively to analyze and understand the mechanisms of material removal. More specifically, topology, shape and size of the interaction zone will be investigated videgraphically and simulatively and it will be clarified how these characteristics influence melt flow and material removal in RFC. Furthermore, it will be analyzed, primarily simulatively, how evaporation and the associated vapor pressure influence melt flow and how surface tension, vapor pressure and hydrodynamic pressure behave in RFC and in the transitions to welding. Since RFC reacts to changes of track geometries way more sensitively than welding and this often leads to loss of cut, it will be investigated videographically and simulatively how the track geometry influences the shape of the interaction zone, the melt flow and the material removal. Additionally, it will be investigated how and how much the laser power influences the maximum feed rate and the quality of the cut edges.Due to the verified fluiddynamic process model used in the project, in case of differences between experiment and simulation in certain areas of the process, the cause of the differences can be limited to an error in the implemented model or to false material properties. Therefore, by comparisons with experiments and iterative changes of the model process understanding can be built. This process understanding will be used to investigate possibilities to control and stabilize the process, e. g. by modulation of the laser power or modifications of the intensity distributions using phase masks. This knowledge will be condensed in user rules to contribute to the industrial applicability of RFC.
与传统的天然气辅助切割过程相比,由于其资源效率和行业中更灵活的可行性,远程融合切割(RFC)或前压力切割对各种工业应用的潜力很高。但是,稳定的过程布局对于利用这种潜力至关重要。当前,对于参数的变化以及解释或解决此行为所需的过程理解通常是不可能的。因此,在拟议的项目中,将开发稳定过程布局所需的过程理解。为了全面地理解过程,不仅是RFC的过程,而且还可以理解其过程窗口的边界。 e。将调查向焊接制度的过渡。在第一步中,实验所需的分析算法和已经开发的仿真模型将适应该过程,改进和验证。然后,将对过程进行实验和模拟检查,以分析和理解材料去除的机制。更具体地说,将对录像带和模拟进行研究的拓扑,形状和大小,并将澄清这些特性如何影响RFC中的熔体流量和材料去除。此外,将主要分析蒸发和相关的蒸气压力如何影响熔体流动以及表面张力,蒸气压力和流体动力压力在RFC和焊接过渡中如何表现。由于RFC对轨道几何形状的变化反应比焊接更敏感,这通常会导致切割的损失,因此将在摄像机和模拟上进行调查,轨道几何形状如何影响交互作用区域的形状,熔体流量和材料去除。此外,将研究激光功率如何以及如何影响最大进料速率和切割边缘的质量。在项目中使用的经过验证的流体动力过程模型,如果过程的某些过程中的某些区域之间存在差异,则差异的原因可能仅限于实施模型或虚假材料属性中的差异。因此,通过与实验和模型过程理解的迭代变化进行比较。这种过程的理解将用于调查控制和稳定过程的可能性。 g。通过调制激光功率或使用相掩码对强度分布的修改。这些知识将在用户规则中凝结,以促进RFC的工业适用性。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Professor Dr.-Ing. Michael Schmidt其他文献

Professor Dr.-Ing. Michael Schmidt的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Professor Dr.-Ing. Michael Schmidt', 18)}}的其他基金

Spatially resolved detection of the scattering coefficient and the capillary network of tissue by using a random laser
使用随机激光对组织的散射系数和毛细血管网络进行空间分辨检测
  • 批准号:
    414732368
  • 财政年份:
    2019
  • 资助金额:
    --
  • 项目类别:
    Research Grants
3D diffractive elements through fs-laser direct writing
飞秒激光直写3D衍射元件
  • 批准号:
    409765270
  • 财政年份:
    2019
  • 资助金额:
    --
  • 项目类别:
    Research Grants
Analysis of the interactions between the morphology and the properties of weld seams during laser transmission welding of plastics by a three-dimensional, spatially re-solved determination of the crystallinity of the weld seam by means of Raman microscopy
通过拉曼显微镜对焊缝结晶度进行三维空间分辨率测定,分析塑料激光透射焊接过程中焊缝形态和性能之间的相互作用
  • 批准号:
    399619237
  • 财政年份:
    2018
  • 资助金额:
    --
  • 项目类别:
    Research Grants
Three dimensional mapping of turbid media by hyper spectral imaging
通过高光谱成像对浑浊介质进行三维绘图
  • 批准号:
    337270237
  • 财政年份:
    2017
  • 资助金额:
    --
  • 项目类别:
    Research Grants
Beam shaping of ultrashort laser pulses by means of acousto-optic deflection and refraction
通过声光偏转和折射对超短激光脉冲进行光束整形
  • 批准号:
    278658739
  • 财政年份:
    2015
  • 资助金额:
    --
  • 项目类别:
    Research Grants
Transient Multi-Phase Modelling of Process Dynamics in Ultrafast Laser Ablation of Metals
金属超快激光烧蚀过程动力学的瞬态多相建模
  • 批准号:
    245510492
  • 财政年份:
    2015
  • 资助金额:
    --
  • 项目类别:
    Research Grants
Multi-Physics Modeling of Laser Beam Drilling with Temporally Shaped Pulses
使用时间整形脉冲进行激光束钻孔的多物理场建模
  • 批准号:
    278627194
  • 财政年份:
    2015
  • 资助金额:
    --
  • 项目类别:
    Research Grants
Arc-based ultra-short laser pulse assisted workpiece machining
基于电弧的超短激光脉冲辅助工件加工
  • 批准号:
    263891905
  • 财政年份:
    2015
  • 资助金额:
    --
  • 项目类别:
    Research Grants
Stress-related process know-how and process optimasiton of plastic welding unsing the example of laser transmission welding
以激光透射焊接为例,了解塑料焊接的应力相关工艺知识和工艺优化
  • 批准号:
    239632851
  • 财政年份:
    2014
  • 资助金额:
    --
  • 项目类别:
    Research Grants
Einbettende Stereolithogrphie - Prozessentwicklung zur Integration von Funktionselementen in mechatronischen Baugruppen
嵌入立体光刻 - 机电一体化组件中功能元件集成的工艺开发
  • 批准号:
    190972254
  • 财政年份:
    2011
  • 资助金额:
    --
  • 项目类别:
    Research Grants

相似国自然基金

神经元模型中混合模式振荡诱导机制的动力学研究
  • 批准号:
    12302069
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
准一维铬砷基超导材料电子关联动力学性质的第一性原理研究
  • 批准号:
    12304175
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
柔性钙钛矿室内光伏器件中“微-宏观”应力调谐及其载流子复合动力学研究
  • 批准号:
    62305261
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
摇摆桥梁三维动力学行为及地震响应规律研究
  • 批准号:
    52308494
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
桃果实采后冷害质地劣变的细胞壁果胶动力学机制研究
  • 批准号:
    32302155
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Next generation forest dynamics modelling using remote sensing data
使用遥感数据的下一代森林动力学建模
  • 批准号:
    MR/Y033981/1
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Fellowship
Development of wireless, wearable flow sensors for continuous, long-term tracking of cerebrospinal fluid dynamics in patients with hydrocephalus
开发无线可穿戴流量传感器,用于连续、长期跟踪脑积水患者的脑脊液动力学
  • 批准号:
    10728656
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
Virtual Positive Parenting Intervention to Promote Filipino Family Wellness: A Randomized Controlled Trial
促进菲律宾家庭健康的虚拟积极育儿干预:随机对照试验
  • 批准号:
    10804476
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
Assessing Children’s Learning Achievement Using Remote Video Technology
使用远程视频技术评估儿童的学习成绩
  • 批准号:
    10451037
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
Collaborative Research: Revealing the hidden groundwater storage dynamics of the Great Lakes Basin by synthesizing geodesy, hydrologic modeling, and remote sensing
合作研究:通过综合大地测量学、水文建模和遥感,揭示五大湖盆地隐藏的地下水储量动态
  • 批准号:
    2218194
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了