Spin qubits and entanglement in semiconductor nanostructures, as well as spin decoherence due to the hyperfine interaction and the spin-orbit coupling
半导体纳米结构中的自旋量子位和纠缠,以及由于超精细相互作用和自旋轨道耦合导致的自旋退相干
基本信息
- 批准号:41120233
- 负责人:
- 金额:--
- 依托单位:
- 依托单位国家:德国
- 项目类别:Priority Programmes
- 财政年份:2007
- 资助国家:德国
- 起止时间:2006-12-31 至 2014-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
We aim at a theoretical understanding of the fundamentals of quantum phase coherence of single spins in semiconductor nanostructures such as quantum dots. To this end, the relevant physical processes leading to decoherence (loss of coherence) and processes that can enhance the electron spin coherence will be investigated. For electron spins, one of the dominant decoherence mechanisms is the hyperfine coupling to the surrounding nuclear spins. Still, there are many aspects of the electron spin-nuclear spin ensemble dynamics and nuclear state preparation for spin coherence that are not understood and require further investigation. Therefore, the emphasis of the third phase of this project remains on the problem of electron-nuclear spin interactions in semiconductors. Besides the fundamental scientific understanding, theoretical modeling of spin decoherence in dependence of its nuclear spin environment is also important because electron spins in semiconductor structures have been identified as qubits for quantum information processing. To model decoherence of single spins, analytical methods such as the superoperator formalism are suitable. We have obtained some analytical results on the preparation of an ensemble of nuclear spins coupled to a single electron spin in a quantum dot, and some numerical simulations of a nuclear-spin preparation scheme with a few hundred nuclear spins, as well as a description of coherent electronnuclear spin Landau-Zener-Stückelberg oscillations, which agrees well with experiment. We are now at the point where the analytical and numerical methods that we have established can be further developed and generalized, in order to obtain a more quantitative description of recent and future nuclear-spin manipulation experiments.
我们的目标是在半导体纳米结构,如量子点的单自旋的量子相位相干性的基本原理的理论理解。为此,将研究导致退相干(相干性损失)的相关物理过程和可以增强电子自旋相干性的过程。对于电子自旋,主要的退相干机制之一是与周围核自旋的超精细耦合。尽管如此,电子自旋-核自旋系综动力学和自旋相干性的核态准备仍有许多方面尚未理解,需要进一步研究。因此,该项目第三阶段的重点仍然是半导体中的电子-核自旋相互作用问题。除了基本的科学理解,自旋退相干依赖于其核自旋环境的理论建模也很重要,因为半导体结构中的电子自旋已被确定为量子信息处理的量子比特。为了模拟单自旋的退相干,分析方法,如超算子形式主义是合适的。我们得到了量子点中与单电子自旋耦合的核自旋系综制备的一些解析结果,几百个核自旋的核自旋制备方案的一些数值模拟,以及相干电子-核自旋Landau-Zener-Stückelberg振荡的描述,这与实验符合得很好.我们现在的点,我们已经建立的分析和数值方法,可以进一步发展和推广,以获得更定量的描述最近和未来的核自旋操纵实验。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Professor Dr. Guido Burkard其他文献
Professor Dr. Guido Burkard的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Professor Dr. Guido Burkard', 18)}}的其他基金
Induced Spin Textures in van der Waals Heterostructures
范德华异质结构中的诱导自旋纹理
- 批准号:
279133429 - 财政年份:2015
- 资助金额:
-- - 项目类别:
Research Grants
Confinement in Graphene Nanostructures CONGRAN
石墨烯纳米结构中的约束 CONGRAN
- 批准号:
162680136 - 财政年份:2010
- 资助金额:
-- - 项目类别:
Research Grants
Spin coherence, spin qubits, and spin transport in carbon nanostructures
碳纳米结构中的自旋相干性、自旋量子位和自旋输运
- 批准号:
64120153 - 财政年份:2008
- 资助金额:
-- - 项目类别:
Research Units
High impedance circuit quantum electrodynamics with hole spins
具有空穴自旋的高阻抗电路量子电动力学
- 批准号:
450396347 - 财政年份:
- 资助金额:
-- - 项目类别:
Research Grants
相似海外基金
CAREER: Coherent Control, Measurement, and Entanglement of Single T-Center Qubits
职业:单 T 中心量子位的相干控制、测量和纠缠
- 批准号:
2238298 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Continuing Grant
Measurement-based entanglement of single-dopant As spin qubits
基于测量的单掺杂剂 As 自旋量子位的纠缠
- 批准号:
2723776 - 财政年份:2022
- 资助金额:
-- - 项目类别:
Studentship
Measurement-based entanglement of single-dopant As spin qubits
基于测量的单掺杂剂 As 自旋量子位的纠缠
- 批准号:
EP/W000520/1 - 财政年份:2022
- 资助金额:
-- - 项目类别:
Research Grant
Measurement-based entanglement of single-dopant As spin qubits
基于测量的单掺杂剂 As 自旋量子位的纠缠
- 批准号:
2579795 - 财政年份:2021
- 资助金额:
-- - 项目类别:
Studentship
Collaborative Research: Quantum acoustics for optomechanical transduction and entanglement of solid-state spin qubits
合作研究:用于光机械传导和固态自旋量子位纠缠的量子声学
- 批准号:
2006076 - 财政年份:2020
- 资助金额:
-- - 项目类别:
Standard Grant
Measurement-based entanglement of spin qubits
基于测量的自旋量子位纠缠
- 批准号:
2402393 - 财政年份:2020
- 资助金额:
-- - 项目类别:
Studentship
Collaborative Research: Quantum acoustics for optomechanical transduction and entanglement of solid-state spin qubits
合作研究:用于光机械传导和固态自旋量子位纠缠的量子声学
- 批准号:
2006103 - 财政年份:2020
- 资助金额:
-- - 项目类别:
Standard Grant
Entanglement Detection and Characterization of Topological States
拓扑态的纠缠检测和表征
- 批准号:
19F19326 - 财政年份:2019
- 资助金额:
-- - 项目类别:
Grant-in-Aid for JSPS Fellows
RAISE-TAQS: Entanglement and information in complex networks of qubits
RAISE-TAQS:复杂量子比特网络中的纠缠和信息
- 批准号:
1839232 - 财政年份:2018
- 资助金额:
-- - 项目类别:
Standard Grant
Application of High-Fidelity, High-Speed Remote Entanglement of Trapped Ion Qubits to Fundamental Quantum Information Processing
俘获离子量子位的高保真、高速远程纠缠在基础量子信息处理中的应用
- 批准号:
2123252 - 财政年份:2018
- 资助金额:
-- - 项目类别:
Studentship














{{item.name}}会员




