Comparison of Evolutionary and Machine Learning-Based Algorithms for Energy-Aware Instruction Scheduling

用于能源感知指令调度的进化算法和基于机器学习的算法的比较

基本信息

项目摘要

Current digital signal processors (DSP) take profit of a very long instruction word (VLIW) architecture style, which provides high performance by executing independent instructions in parallel, and reduced power consumption due to the small silicon area requirement compared to other parallel processor architecture concepts. For that, VLIW compilers are in charge of rearranging independent instructions of the input program into very long instructions. However, instruction scheduling can generally not be performed optimally due to problem complexity (up to n! schedules for n operations) and architecture constraints (e.g. hardware resource conflicts). Traditionally, these problems are handled with heuristic-based algorithms, which are manually tailored to a specific processor architecture and only consider a single scheduling objective (e.g. code compaction).This project will research the use of a Multi-Objective Evolutionary Algorithm (MOEA) approach within a VLIW compiler for combined instruction scheduling, register allocation, and code selection. By evolving a population of solutions, this approach provides flexibility to be used for different target architectures (re-targetable compiler) and also overcomes the limitations of static heuristic-based algorithms. The trade-off of long compile times can be reduced with parallel computing techniques. Moreover, the MOEA approach can take different compiling objectives (code compaction and power consumption) into account, considering that different code schedules produce different internal switching activity, which is the main cause for dynamic power consumption. Moreover, a machine-learning approach for identifying significant code features (feature mining) for automatic generation of architecture-specific heuristic functions will be researched to enhance traditional heuristic-based schedulers, taking profit of their low compile time and deterministic behavior. Finally, both approaches will be evaluated and compared to a state-of-the-art heuristic-based instruction scheduler (i.e. list scheduling algorithm) on four different commercial and research VLIW DSPs. By using two different DSP evaluation boards, the impact of the instruction scheduling on the power consumption will also be measured and studied.
当前的数字信号处理器(DSP)利用超长指令字(VLIW)架构风格,其通过并行执行独立指令来提供高性能,并且与其他并行处理器架构概念相比由于小的硅面积要求而降低了功耗。为此,VLIW编译器负责将输入程序的独立指令重新排列为非常长的指令。然而,由于问题的复杂性(高达n!用于N个操作的调度)和架构约束(例如,硬件资源冲突)。传统上,这些问题都是用基于进化的算法来处理的,这些算法是针对特定的处理器架构手动定制的,并且只考虑单个调度目标(例如代码压缩)。本项目将研究在VLIW编译器中使用多目标进化算法(MOEA)来组合指令调度、寄存器分配和代码选择。通过进化一系列的解决方案,这种方法提供了用于不同目标架构(可重定向编译器)的灵活性,并且还克服了基于静态编译器的算法的局限性。长编译时间的折衷可以通过并行计算技术来减少。此外,MOEA方法可以考虑不同的编译目标(代码压缩和功耗),考虑到不同的代码调度产生不同的内部切换活动,这是动态功耗的主要原因。此外,机器学习的方法来识别显着的代码功能(特征挖掘)的自动生成的体系结构特定的启发式功能将被研究,以提高传统的基于启发式的编译器,利用其低编译时间和确定性的行为。最后,这两种方法将进行评估和比较,一个国家的最先进的基于指令调度器(即列表调度算法)在四个不同的商业和研究VLIW DSP。通过使用两个不同的DSP评估板,指令调度对功耗的影响也将被测量和研究。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Professor Dr.-Ing. Guillermo Paya Vaya, Ph.D.其他文献

Professor Dr.-Ing. Guillermo Paya Vaya, Ph.D.的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

相似海外基金

How well can we predict future changes in biodiversity using machine learning? Experiments in an eco-evolutionary testbed.
我们如何利用机器学习来预测生物多样性的未来变化?
  • 批准号:
    2890191
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Studentship
Leveraging evolutionary analyses and machine learning to discover multiscale molecular features associated with antibiotic resistance
利用进化分析和机器学习发现与抗生素耐药性相关的多尺度分子特征
  • 批准号:
    10658686
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
Annotating dark ion-channel functions using evolutionary features, machine learning and knowledge graph mining
使用进化特征、机器学习和知识图挖掘注释暗离子通道函数
  • 批准号:
    10457684
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
Developing machine learning tools to investigate evolutionary trajectories in emerging viral infectious diseases
开发机器学习工具来研究新出现的病毒传染病的进化轨迹
  • 批准号:
    2734734
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
    Studentship
Annotating dark ion-channel functions using evolutionary features, machine learning and knowledge graph mining (Kennady Boyd)
使用进化特征、机器学习和知识图挖掘注释暗离子通道函数 (Kennady Boyd)
  • 批准号:
    10809950
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
Annotating dark ion-channel functions using evolutionary features, machine learning and knowledge graph mining
使用进化特征、机器学习和知识图挖掘注释暗离子通道函数
  • 批准号:
    10661550
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
Annotating dark ion-channel functions using evolutionary features, machine learning and knowledge graph mining (Rayna Carter)
使用进化特征、机器学习和知识图挖掘注释暗离子通道函数 (Rayna Carter)
  • 批准号:
    10809931
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
Machine education for trusted multi-skilled evolutionary learners
为值得信赖的多技能进化学习者提供机器教育
  • 批准号:
    DP200101211
  • 财政年份:
    2020
  • 资助金额:
    --
  • 项目类别:
    Discovery Projects
Explainable machine learning using evolutionary computing
使用进化计算的可解释机器学习
  • 批准号:
    551233-2020
  • 财政年份:
    2020
  • 资助金额:
    --
  • 项目类别:
    University Undergraduate Student Research Awards
Developing Fast Algorithms based on Advanced Evolutionary Algorithms with Machine Learning and Applying to Real-time based Manufacturing and Logistics Systems
开发基于先进进化算法和机器学习的快速算法并应用于基于实时的制造和物流系统
  • 批准号:
    19K12148
  • 财政年份:
    2019
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了