Dusty plasmas with high electron depletion:Investigation of fundamental mechanisms and properties through particle and plasma diagnostics

具有高电子损耗的尘埃等离子体:通过粒子和等离子体诊断研究基本机制和特性

基本信息

项目摘要

This project is dedicated to the investigation of a nanodusty plasma with a particle number density that is sufficiently high to significantly affect the properties of the whole plasma. Due to the high negative charging of the particles, electrons are strongly depleted and the plasma changes its state from a three-component dust-ion-electron plasma to a two-component dust-ion plasma. The charging of the nanoparticles in the plasma is the key property – a comprehensive understanding of the processes involved is essential for both fundamental plasma physics research and plasma technology. The Havnes parameter P provides a measure for the degree of electron depletion between P = 0 (no depletion) and P → ∞ (complete electron depletion). In this project we will• Create nanodusty laboratory plasmas with very high Havnes-Parameter ( P > 100)• Characterize these plasmas using the dust-density wave diagnostics• Develop in-situ diagnostics of the nanoparticle size and density profile by means of light scattering techniques for both optically thin and thick clouds• Verify the in-situ diagnostics by ex-situ microscopy, and• Develop new light scattering diagnostics for technical applicationsFor the first time, laboratory plasmas with a high Havnes parameter will be characterized in depth. The new insight into the growth of nanoparticles and the knowledge about the mechanisms of growth and confinement of nanoparticles in a plasma will be of importance for both basic plasma physics and future plasma technological applications.
本项目致力于研究纳米尘埃等离子体,其粒子数密度足够高,足以显著影响整个等离子体的特性。由于粒子的高负电荷,电子被强烈耗尽,等离子体从三组分尘埃-电子等离子体变为双组分尘埃-离子等离子体。等离子体中纳米粒子的充电是关键特性——对相关过程的全面理解对于基础等离子体物理研究和等离子体技术都是必不可少的。哈夫内斯参数P提供了在P = 0(无耗尽)和P→∞(完全电子耗尽)之间的电子耗尽程度的度量。在这个项目中,我们将•创建具有非常高哈夫斯参数(P > 100)的纳米尘埃实验室等离子体•使用尘埃密度波诊断来表征这些等离子体•通过光散射技术对光学薄云和厚云进行纳米颗粒尺寸和密度分布的原位诊断开发•通过非原位显微镜验证原位诊断,以及•为技术应用开发新的光散射诊断。具有高哈夫纳参数的实验室等离子体将被深入表征。对纳米颗粒生长的新认识以及对等离子体中纳米颗粒生长和约束机制的认识将对基础等离子体物理学和未来等离子体技术应用具有重要意义。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Privatdozent Dr. Franko Greiner其他文献

Privatdozent Dr. Franko Greiner的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Privatdozent Dr. Franko Greiner', 18)}}的其他基金

General electromagnetic model of active plasma resonance spectroscopy and its application to spatiotemporal electron density and temperature measurements of nanodusty plasmas
主动等离子体共振光谱的一般电磁模型及其在纳米尘埃等离子体时空电子密度和温度测量中的应用
  • 批准号:
    531667910
  • 财政年份:
  • 资助金额:
    --
  • 项目类别:
    Research Grants
Towards a new method to measure low energy electron sticking coefficients using dusty plasmas
探索一种使用尘埃等离子体测量低能电子粘着系数的新方法
  • 批准号:
    443791209
  • 财政年份:
  • 资助金额:
    --
  • 项目类别:
    Research Grants

相似海外基金

Electron-molecule collisions in fusion and astrophysical plasmas
聚变和天体物理等离子体中的电子-分子碰撞
  • 批准号:
    DP240101184
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Discovery Projects
Macroscopic structures governed by electron dynamics in non-equilibrium plasmas
非平衡等离子体中电子动力学控制的宏观结构
  • 批准号:
    22H01195
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Optical Properties of Cold Dense Electron-Positron Plasmas
冷致密电子-正电子等离子体的光学性质
  • 批准号:
    2208085
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
RUI: Using Atomic Physics to Achieve Strong Electron Coupling in Ultracold Plasmas
RUI:利用原子物理实现超冷等离子体中的强电子耦合
  • 批准号:
    2011335
  • 财政年份:
    2020
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Study of Nonthermal Electron Driven Warm Dense Plasmas Using X-Ray Free Electron Lasers
利用 X 射线自由电子激光器研究非热电子驱动的暖致密等离子体
  • 批准号:
    2010502
  • 财政年份:
    2020
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
Electron heating in capacitive RF plasmas based on moments of the Boltzmann equation: From fundamental understanding to predictive control
基于玻尔兹曼方程矩的电容式射频等离子体中的电子加热:从基本理解到预测控制
  • 批准号:
    428942393
  • 财政年份:
    2019
  • 资助金额:
    --
  • 项目类别:
    Research Grants
Diagnostics of Electron Energy Distribution Function of Atmospheric-Pressure Plasmas with Phase-Resolved Optical Emission Spectroscopy Measurement of Continuum Spectrum
用连续谱的相位分辨发射光谱测量诊断大气压等离子体的电子能量分布函数
  • 批准号:
    19H01867
  • 财政年份:
    2019
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Quantum Kinetics of Laser-Induced Electron Hole Plasmas in Nanowire Arrays
纳米线阵列中激光诱导电子空穴等离子体的量子动力学
  • 批准号:
    1903462
  • 财政年份:
    2019
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Computational analyses on asymmetric directional electron transport and partial resonance originating in the arrangement of electric and magnetic fields in inductively coupled magnetized plasmas
感应耦合磁化等离子体中电场和磁场排列引起的不对称定向电子传输和部分共振的计算分析
  • 批准号:
    19K03780
  • 财政年份:
    2019
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Study of electron cyclotron resonance heating in over-dense plasmas with direct oblique launching from the high field side
高场侧直接斜发射过密等离子体电子回旋共振加热研究
  • 批准号:
    18K03590
  • 财政年份:
    2018
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了