General electromagnetic model of active plasma resonance spectroscopy and its application to spatiotemporal electron density and temperature measurements of nanodusty plasmas

主动等离子体共振光谱的一般电磁模型及其在纳米尘埃等离子体时空电子密度和温度测量中的应用

基本信息

项目摘要

Microwave methods are excellent for non-invasive diagnostics of plasmas. Compared to classical interferometry, methods that exploit the cavity resonances of plasma chambers (cavities) are very sensitive and can be used up to electron densities of 10^7 m^(-3). With the mathematical methods and microwave measurement techniques available today, methods can be devised that allow spatially resolved electron density measurements and their experimental verification. The detailed simulation of real cavities with a number of microwave receiving and transmitting antennas also allows the determination of the electron temperature. In this project a microwave resonance spectroscopy is developed, which allows arbitrarily shaped cavities and enables the spatially resolved determination of the electron density. To determine the electron temperature, the accurate simulation of the real cavities is required to separate the broadening of the resonances due to the cavity quality from that due to temperature effects. The latter can be determined with the kinetic model of the method. From the models, diagnostic methods are developed that are applied to various low-temperature plasmas. For pure argon plasmas, the new microwave diagnostic can be compared with spatially resolved Langmuir probe measurements. In nanodusty plasmas, which contain nanoparticles as well as ions and electrons, the new diagnostic allows to test dust density wave diagnostics for the first time. Even for reactive, nanoparticle-generating plasmas, the new method can be applied to perform spatially resolved measurements of electron density during particle growth, which has not been possible before.
微波方法对于等离子体的非侵入性诊断是极好的。与经典的干涉测量相比,利用等离子体腔(腔)共振的方法非常灵敏,可用于高达10^7 m^(-3)的电子密度。随着数学方法和微波测量技术的今天,可以设计的方法,允许空间分辨电子密度测量和实验验证。详细的模拟真实的腔与微波接收和发射天线的数量也允许的电子温度的测定。在这个项目中,微波共振光谱学的发展,它允许任意形状的空腔,并使空间分辨的电子密度的测定。为了确定电子温度,需要对真实的腔进行精确的模拟,以将由于腔质量引起的共振展宽与由于温度效应引起的共振展宽分开。后者可以用该方法的动力学模型来确定。从模型,诊断方法的开发,适用于各种低温等离子体。对于纯氩等离子体,新的微波诊断可以与空间分辨的朗缪尔探针测量。在含有纳米粒子以及离子和电子的纳米尘埃等离子体中,新的诊断允许首次测试尘埃密度波诊断。即使对于反应性的纳米粒子生成等离子体,新方法也可以应用于在粒子生长过程中进行空间分辨的电子密度测量,这在以前是不可能的。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Privatdozent Dr. Franko Greiner其他文献

Privatdozent Dr. Franko Greiner的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Privatdozent Dr. Franko Greiner', 18)}}的其他基金

Dusty plasmas with high electron depletion:Investigation of fundamental mechanisms and properties through particle and plasma diagnostics
具有高电子损耗的尘埃等离子体:通过粒子和等离子体诊断研究基本机制和特性
  • 批准号:
    418187010
  • 财政年份:
  • 资助金额:
    --
  • 项目类别:
    Research Grants
Towards a new method to measure low energy electron sticking coefficients using dusty plasmas
探索一种使用尘埃等离子体测量低能电子粘着系数的新方法
  • 批准号:
    443791209
  • 财政年份:
  • 资助金额:
    --
  • 项目类别:
    Research Grants

相似国自然基金

电磁作用下蛋白质分离行为的研究
  • 批准号:
    20976119
  • 批准年份:
    2009
  • 资助金额:
    38.0 万元
  • 项目类别:
    面上项目
基于电阻层析成象和电磁流量计融合的两相流检测研究
  • 批准号:
    60772044
  • 批准年份:
    2007
  • 资助金额:
    8.0 万元
  • 项目类别:
    面上项目

相似海外基金

In vivo feasibility of a smart needle ablation treatment for liver cancer
智能针消融治疗肝癌的体内可行性
  • 批准号:
    10699190
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
Modeling, measurement and prediction of cardiac magneto-stimulation thresholds
心脏磁刺激阈值的建模、测量和预测
  • 批准号:
    10734438
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
A decellularized porcine placenta matrix hydrogel for management of radiation-induced proctitis
用于治疗放射性直肠炎的脱细胞猪胎盘基质水凝胶
  • 批准号:
    10599727
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
Rapid low-cost production of contrast agents for metabolic imaging
快速低成本生产代谢成像造影剂
  • 批准号:
    10572052
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
Targeting evolutionarily encoded molecular antennae to wirelessly reprogram systemic metabolism
靶向进化编码的分子天线以无线方式重新编程全身代谢
  • 批准号:
    10687635
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
Integration of non-invasive deep tissue microwave thermometry in the VectRx hyperthermia device in a transgenic liver tumor pig model
在转基因肝肿瘤猪模型中将非侵入性深部组织微波测温技术集成到 VectRx 热疗装置中
  • 批准号:
    10697183
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
Establishment of large-scale finite element electromagnetic field analysis using a high-precision human body model in a 5G environment
5G环境下高精度人体模型建立大规模有限元电磁场分析
  • 批准号:
    23K16893
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Developing microwave epiphysiodesis to correct limb length discrepancies
开发微波骨骺固定术以纠正肢体长度差异
  • 批准号:
    10804031
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
A Novel Bone Marrow Transplantation Approach for Sickle Cell Disease Using Targeted Marrow Irradiation
使用靶向骨髓照射治疗镰状细胞病的新型骨髓移植方法
  • 批准号:
    10737358
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
The biology of Cryptococcus neoformans melanization
新型隐球菌黑化的生物学
  • 批准号:
    10660435
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了