3D Spectral Imaging based on Compton scattering: data modelling and reconstruction strategies
基于康普顿散射的 3D 光谱成像:数据建模和重建策略
基本信息
- 批准号:419953439
- 负责人:
- 金额:--
- 依托单位:
- 依托单位国家:德国
- 项目类别:Research Grants
- 财政年份:2019
- 资助国家:德国
- 起止时间:2018-12-31 至 2020-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
In a standard CT-scan, a x-ray source irradiates a target and a set of detectors measures the attenuation of the crossing beams for various source positions. The measured data is then processed to get an image featuring the target in a non-invasive manner. In this classical scheme, the energy of the detected radiation is unexploited as a data variable. The recent development of spectral cameras opens the way for designing energy-based imaging systems. One concept consists in considering a monochromatic source and modelling the spectrum of the measured photon flux by the Compton effect. In this context, our previous project developed suitable forward models and reconstruction methods when the scattered radiation is assumed only of order one. However, the scattered radiation of order larger than one represents a substantial part of the complete spectrum. Considering higher scattering orders changes the nature of the data. This is why we speak in that respect of 3D Spectral Imaging based on Compton Scattering (CSpI). This will provide significant advances in imaging such as reducing the radiation dose received by the patient (in CT only 20% of the primary radiation is exploited), reducing the data acquisition time and delivering new insights of the object regarding standard techniques.Thus, we strive for developing a mathematical framework for imaging the 3D volume of an object of interest from spectral CSpI-data. For this purpose, the project is divided in two main approaches: The first one shall study the smoothness properties of the derived model for the multiple scattering to enable extracting the features of the sought-for quantity via filtered backprojection type algorithms. These are fast to compute and do not require prior information. In addition, our second approach includes data-driven strategies which allow more flexibility at the cost of prior information or computation times. In this context, we propose to first approximate the nonlinear data model by a linear operator and to consider the unknown part as an uncertain quantity. Methods from optimization theory could then bring a reconstruction scheme. At last, machine learning techniques could help to differentiate the multiple scattering from the first order within the spectrum. This would offer the possibility to further exploit the methods developed in previous project.In conclusion, the proposed project will provide the theoretical basis to exploit fully the multiple scattering for imaging purposes via future CSpI modalities.
在标准CT扫描中,X射线源照射目标,一组检测器测量不同源位置的交叉光束的衰减。然后对测量数据进行处理,以获得以非侵入性方式表征目标的图像。在这个经典方案中,探测到的辐射的能量未被利用作为数据变量。光谱相机的最新发展为设计基于能量的成像系统开辟了道路。一个概念是考虑单色光源,并通过康普顿效应对测量的光子通量的光谱进行建模。在这种情况下,我们以前的项目开发了合适的前向模型和重建方法时,散射辐射假设只有一阶。然而,大于一阶的散射辐射代表了完整光谱的相当大的一部分。考虑更高的散射阶数会改变数据的性质。这就是为什么我们在基于康普顿散射(CSpI)的3D光谱成像方面发言。这将提供显着的进步,成像,如减少由患者接收的辐射剂量(在CT中,只有20%的初级辐射被利用),减少数据采集时间,并提供新的见解的对象有关的标准technology.Thus,我们努力开发一个数学框架,用于成像的3D体积的对象的感兴趣的光谱CSpI数据。为此,该项目分为两种主要方法:第一种方法将研究多重散射导出模型的平滑特性,以便通过滤波反投影型算法提取所需数量的特征。这些计算速度快,不需要先验信息。此外,我们的第二种方法包括数据驱动的策略,以先验信息或计算时间为代价,允许更大的灵活性。在这种情况下,我们建议首先近似的非线性数据模型的线性算子,并考虑未知部分作为一个不确定的量。最优化理论的方法可以带来一个重建方案。最后,机器学习技术可以帮助区分光谱中的多次散射和一阶散射。这将提供进一步利用在以前的项目中开发的方法的可能性。总之,所提出的项目将提供理论基础,充分利用多重散射成像的目的,通过未来的CSpI模态。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Dr. Gael Rigaud其他文献
Dr. Gael Rigaud的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Dr. Gael Rigaud', 18)}}的其他基金
2D and 3D Transmission Compton Scattering Imaging solved by Generalized Radon Transforms
通过广义氡变换解决 2D 和 3D 传输康普顿散射成像
- 批准号:
290054006 - 财政年份:2016
- 资助金额:
-- - 项目类别:
Research Grants
相似国自然基金
一种新型的PET/spectral-CT/CT三模态图像引导的小动物放射治疗平台的设计与关键技术研究
- 批准号:LTGY23H220001
- 批准年份:2023
- 资助金额:0.0 万元
- 项目类别:省市级项目
关于spectral集和spectral拓扑若干问题研究
- 批准号:11661057
- 批准年份:2016
- 资助金额:36.0 万元
- 项目类别:地区科学基金项目
S3AGA样本(Spitzer-SDSS Spectral Atlas of Galaxies and AGNs)及其AGN研究
- 批准号:11473055
- 批准年份:2014
- 资助金额:95.0 万元
- 项目类别:面上项目
相似海外基金
Quantitative OCT-Raman spectral imaging for intra-operative detection of positive margins in breast conserving surgery
定量 OCT-拉曼光谱成像用于保乳手术中阳性切缘的术中检测
- 批准号:
MR/Y008731/1 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Research Grant
Development of an In-Silico Research Framework for Accelerating the Translation of Quantitative Photon-Counting Spectral Imaging to the Clinic
开发计算机模拟研究框架,加速定量光子计数光谱成像向临床的转化
- 批准号:
EP/X04095X/1 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Research Grant
High-Speed, Low-Cost, Image Remapping Spectral Domain Full-Field Optical Coherence Tomography for Retinal Imaging
用于视网膜成像的高速、低成本图像重映射谱域全场光学相干断层扫描
- 批准号:
10670648 - 财政年份:2023
- 资助金额:
-- - 项目类别:
1 mm resolution single-photon spectral imaging of the brain
1 毫米分辨率单光子大脑光谱成像
- 批准号:
10724955 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Next Generation Cone Beam CT with Improved Contrast Resolution and Added Spectral Imaging Functionality
下一代锥束 CT 具有改进的对比度分辨率并增加了光谱成像功能
- 批准号:
10660754 - 财政年份:2023
- 资助金额:
-- - 项目类别:
3D-Spectral Imaging system for thrombus monitoring in ECMO
用于 ECMO 血栓监测的 3D 光谱成像系统
- 批准号:
22K18226 - 财政年份:2022
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Early-Career Scientists
Graph Spectral Imaging: Sampling, Representation and Restoration
图谱成像:采样、表示和恢复
- 批准号:
RGPIN-2019-06271 - 财政年份:2022
- 资助金额:
-- - 项目类别:
Discovery Grants Program - Individual
Plastic packaging, a complete recognition and monitoring system based on AI and fusing RGB-based computer vision with Near Infrared spectral Imaging (NIR SI)
塑料包装,基于人工智能并将基于 RGB 的计算机视觉与近红外光谱成像 (NIR SI) 融合的完整识别和监控系统
- 批准号:
10020954 - 财政年份:2022
- 资助金额:
-- - 项目类别:
Collaborative R&D
Multi-spectral and phase contrast X-ray detectors for advanced radiation imaging applications
适用于高级辐射成像应用的多光谱和相衬 X 射线探测器
- 批准号:
RGPIN-2019-04063 - 财政年份:2022
- 资助金额:
-- - 项目类别:
Discovery Grants Program - Individual