The molecular scale of switchable wetting
可转换投注的分子规模
基本信息
- 批准号:422852727
- 负责人:
- 金额:--
- 依托单位:
- 依托单位国家:德国
- 项目类别:Priority Programmes
- 财政年份:2019
- 资助国家:德国
- 起止时间:2018-12-31 至 2023-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Intermolecular interfacial interactions co-determine macroscopic wetting properties, yet insights into wetting at the molecular level have been lacking. Here, we propose to use photoswitchable surfaces based on spiropyran/merocyanine isomerization to instantaneously switch the surface’s wetting properties, and follow the molecular response of water in real-time. In the closed spiropyran form, the molecule is nonpolar, while it is zwitterionic in the open merocyanine form. Under UV light irradiation the merocyanine form is obtained; visible light switches the molecule back to the closed form. It is well-known that surfaces functionalized with the spiropyran/merocyanine pair behave hydrophobic for the spiropyran case, but hydrophilic for the merocyanine form. The ability to switch the hydrophobicity of these surfaces using ultrashort laser pulses – shorter than the timescales on which molecules reorient –provides a unique way to follow the response of water to a step change in the hydrophobic surface properties. In this manner, we aim to obtain molecular-level information about the (de)wetting dynamics at switchable substrates and to correlate molecular-level details on the water organization with macroscopic wetting properties. The structure of water and the organic coating at the interface will be investigated before, during, and after photoswitching using sum frequency generation (SFG) spectroscopy. In SFG, an infrared laser pulse and a visible laser pulse are overlapped at the interface. If the infrared laser pulse is in resonance with a molecular vibration, the signal is strongly enhanced. Due to its selection rules, SFG probes specifically the interfacial layers and does not see the bulk water. The vibrational frequency provides information about the strength of the hydrogen bond network, while the intensity of the signal is a measure for the amount of water alignment. Furthermore, we can obtain information about the ordering of the polymer from its CH vibrations. By combining the SFG probe method with an optical pulse to initiate the transition between hydrophobic and hydrophilic surface, we can obtain dynamical information on sub-picosecond timescales, to probe the molecular timescales on which the water molecules adapt to the new surface structure. Typical questions we aim to address are: - What are differences in the hydrogen bond network of water and the water orientation for the hydrophobic and hydrophilic structure? - How fast does the photoswitch switch and how fast does the rest of the polymer change ordering and orientation? - How fast does the water adapt to the new situation?- What is the dynamics of the contact line spreading? This study will provide unprecedented insights into wetting phenomena at a molecular level, expected to open avenues not only for a better fundamental understanding, but also for designing superior active surfaces.
分子间的界面相互作用共同决定宏观润湿性能,但在分子水平上润湿的见解一直缺乏。在这里,我们建议使用基于spiropyran/mercury异构化的光开关表面来瞬时切换表面的润湿特性,并实时跟踪水的分子响应。在封闭的螺吡喃形式中,分子是非极性的,而在开放的Mercury形式中它是两性离子的。在紫外光照射下,获得汞的形式;可见光将分子切换回闭合形式。众所周知,用螺吡喃/mercury对官能化的表面对于螺吡喃情况表现为疏水性,但对于mercury形式表现为亲水性。使用超短激光脉冲(比分子重新定向的时间尺度更短)切换这些表面疏水性的能力提供了一种独特的方式来跟踪水对疏水表面特性阶跃变化的响应。以这种方式,我们的目标是获得分子水平的信息(去)润湿动力学在可切换基板和相关的水组织与宏观润湿性能的分子水平的细节。水和有机涂层在界面处的结构将被调查之前,期间和之后使用和频发生(SFG)光谱的光开关。在SFG中,红外激光脉冲和可见激光脉冲在界面处重叠。如果红外激光脉冲与分子振动共振,则信号被强烈增强。由于其选择规则,SFG专门探测界面层,看不到大量的水。振动频率提供了关于氢键网络强度的信息,而信号强度是水排列量的量度。此外,我们还可以从聚合物的CH振动中获得有关聚合物有序性的信息。通过结合SFG探针方法和光脉冲引发疏水和亲水表面之间的转变,我们可以获得亚皮秒时间尺度上的动力学信息,以探测水分子适应新表面结构的分子时间尺度。典型的问题,我们的目标是解决:-什么是水的氢键网络和水的疏水和亲水结构的取向的差异?- 光开关的开关速度有多快,聚合物的其余部分改变顺序和方向的速度有多快?- 水适应新形势的速度有多快?什么是接触线传播的动力学?这项研究将提供前所未有的见解润湿现象在分子水平上,预计开辟道路,不仅为更好的基本理解,而且为设计上级活性表面。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Professorin Dr. Ellen Backus其他文献
Professorin Dr. Ellen Backus的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Professorin Dr. Ellen Backus', 18)}}的其他基金
DYNAmics at ionic Water-air INterfaces: Synergy between SFG experiments and DFTMD simulations
离子水-空气界面的动力学:SFG 实验和 DFTMD 模拟之间的协同作用
- 批准号:
258576000 - 财政年份:2014
- 资助金额:
-- - 项目类别:
Research Grants
相似国自然基金
基于热量传递的传统固态发酵过程缩小(Scale-down)机理及调控
- 批准号:22108101
- 批准年份:2021
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于Multi-Scale模型的轴流血泵瞬变流及空化机理研究
- 批准号:31600794
- 批准年份:2016
- 资助金额:22.0 万元
- 项目类别:青年科学基金项目
基于异构医学影像数据的深度挖掘技术及中枢神经系统重大疾病的精准预测
- 批准号:61672236
- 批准年份:2016
- 资助金额:64.0 万元
- 项目类别:面上项目
城镇居民亚健康状态的评价方法学及健康管理模式研究
- 批准号:81172775
- 批准年份:2011
- 资助金额:14.0 万元
- 项目类别:面上项目
嵌段共聚物多级自组装的多尺度模拟
- 批准号:20974040
- 批准年份:2009
- 资助金额:33.0 万元
- 项目类别:面上项目
宇宙暗成分物理研究
- 批准号:10675062
- 批准年份:2006
- 资助金额:26.0 万元
- 项目类别:面上项目
针对Scale-Free网络的紧凑路由研究
- 批准号:60673168
- 批准年份:2006
- 资助金额:25.0 万元
- 项目类别:面上项目
语义Web的无尺度网络模型及高性能语义搜索算法研究
- 批准号:60503018
- 批准年份:2005
- 资助金额:23.0 万元
- 项目类别:青年科学基金项目
超声防垢阻垢机理的动态力学分析
- 批准号:10574086
- 批准年份:2005
- 资助金额:35.0 万元
- 项目类别:面上项目
探讨复杂动力网络的同步能力和鲁棒性
- 批准号:60304017
- 批准年份:2003
- 资助金额:23.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Renewal application: How do ecological trade-offs drive ectomycorrhizal fungal community assembly? Fine- scale processes with large-scale implications
更新应用:生态权衡如何驱动外生菌根真菌群落组装?
- 批准号:
MR/Y011503/1 - 财政年份:2025
- 资助金额:
-- - 项目类别:
Fellowship
Traversing the Gray Zone with Scale-aware Turbulence Closures
通过尺度感知的湍流闭合穿越灰色区域
- 批准号:
2337399 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Standard Grant
Collaborative Research: NCS-FR: Individual variability in auditory learning characterized using multi-scale and multi-modal physiology and neuromodulation
合作研究:NCS-FR:利用多尺度、多模式生理学和神经调节表征听觉学习的个体差异
- 批准号:
2409652 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Standard Grant
Collaborative Research: RUI: Continental-Scale Study of Jura-Cretaceous Basins and Melanges along the Backbone of the North American Cordillera-A Test of Mesozoic Subduction Models
合作研究:RUI:北美科迪勒拉山脊沿线汝拉-白垩纪盆地和混杂岩的大陆尺度研究——中生代俯冲模型的检验
- 批准号:
2346565 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Standard Grant
CRII: OAC: A Compressor-Assisted Collective Communication Framework for GPU-Based Large-Scale Deep Learning
CRII:OAC:基于 GPU 的大规模深度学习的压缩器辅助集体通信框架
- 批准号:
2348465 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Standard Grant
Investigating Multi-Scale Dynamical Processes Amplifying Storm Surges
研究放大风暴潮的多尺度动力学过程
- 批准号:
2342516 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Standard Grant
Collaborative Research: RUI: Continental-Scale Study of Jura-Cretaceous Basins and Melanges along the Backbone of the North American Cordillera-A Test of Mesozoic Subduction Models
合作研究:RUI:北美科迪勒拉山脊沿线汝拉-白垩纪盆地和混杂岩的大陆尺度研究——中生代俯冲模型的检验
- 批准号:
2346564 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Standard Grant
Collaborative Research: OAC Core: Distributed Graph Learning Cyberinfrastructure for Large-scale Spatiotemporal Prediction
合作研究:OAC Core:用于大规模时空预测的分布式图学习网络基础设施
- 批准号:
2403312 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Standard Grant
Continuous, Large-scale Manufacturing of Functionalized Silver Nanowire Transparent Conducting Films
功能化银纳米线透明导电薄膜的连续大规模制造
- 批准号:
2422696 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Standard Grant
Collaborative Research: MRA: A functional model of soil organic matter composition at continental scale
合作研究:MRA:大陆尺度土壤有机质组成的功能模型
- 批准号:
2307253 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Standard Grant














{{item.name}}会员




