A non-smooth phase-field approach to shape optimization with instationary fluid flow
非稳态流体流动形状优化的非光滑相场方法
基本信息
- 批准号:423457678
- 负责人:
- 金额:--
- 依托单位:
- 依托单位国家:德国
- 项目类别:Priority Programmes
- 财政年份:2019
- 资助国家:德国
- 起止时间:2018-12-31 至 2023-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
This project aims at introducing, analyzing and numerically realizing well-posed formulations of shape optimization problems with instationary fluid flow. This will be achieved by utilizing a phase-field ansatz and associated non-smooth homogeneous free energy densities, which yield robust numerical approximations and, for the sake of efficient computations, admit several levels of model reduction ranging from adaptive meshing to proper orthogonal decomposition. Moreover, a Darcy-type approach allows to simultaneously optimize the topology of the fluid domain. We consider the following research objectives, which in all items will be carried in a strongly intertwined effort between the Berlin and the Hamburg group:(a) Investigation of the continuity and differentiability properties of our optimization framework;(b) Development and analysis of fully integrated adaptive numerical methods for adaptive mesh refinement for the efficient discretization of phase-field based shape and topology optimization with instationary fluid flow;(c) Analysis of the optimization problem, in particular of the a posteriori error estimator for the phase field model in the zero-limit of the phase field paramete. (d) Derivation of dual-weighted residual based error estimates for adaptive mesh refinement for the efficient discretization of phase-field based shape and topology optimization with instationary fluid flow;(e) Development, implementation and analysis of algorithmic solution frameworks for phase-field based shape and topology optimization with instationary fluid flow;(f) Development, implementation and analysis of reduced order models for phase-field based shape and topology optimization with instationary fluid flow.Here the Berlin group takes the lead in (a)-(b), and the Hamburg group in (e)-(f). The package in (c)-(d) will strongly benefit from the previous collaborations of the two groups within two other SPPs.
本计画旨在介绍、分析及数值实现具非定常流体流动之形状最佳化问题之适定公式。这将是通过利用相场的ananomaly和相关的非光滑均匀的自由能密度,产生强大的数值近似,为了有效的计算,承认几个层次的模型减少范围从自适应网格适当的正交分解。此外,达西型方法允许同时优化流体域的拓扑结构。我们考虑了以下研究目标,这些研究目标在所有项目中将在柏林和汉堡小组之间紧密交织的努力中进行:(a)研究我们的优化框架的连续性和可微性;(B)开发和分析用于自适应网格细化的完全集成的自适应数值方法,用于基于相场的形状和拓扑优化的有效离散化和不稳定流体流;(c)分析优化问题,特别是在相场参数的零极限中的相场模型的后验误差估计器。(d)(e)开发、实施和分析用于具有不稳定流体流的基于相场的形状和拓扑优化的算法解决框架;(f)开发、实施和分析用于基于相场的形状和拓扑优化的降阶模型,其中柏林小组在(a)-(B)中处于领先地位,和(e)-(f)中的汉堡小组。(c)-(d)项中的一揽子措施将大大受益于这两个小组以前在另外两个SPP中的合作。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Professor Dr. Michael Hintermüller其他文献
Professor Dr. Michael Hintermüller的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Professor Dr. Michael Hintermüller', 18)}}的其他基金
Simulation and Control of a Nonsmooth Cahn-Hilliard Navier-Stokes System with Variable Fluid Densities
可变流体密度非光滑 Cahn-Hilliard Navier-Stokes 系统的仿真与控制
- 批准号:
313972219 - 财政年份:2016
- 资助金额:
-- - 项目类别:
Priority Programmes
Generalized Nash Equilibrium Problems with Partial Differential Operators: Theory, Algorithms, and Risk Aversion
偏微分算子的广义纳什均衡问题:理论、算法和风险规避
- 批准号:
314141981 - 财政年份:2016
- 资助金额:
-- - 项目类别:
Priority Programmes
Optimal Control of Elliptic and Parabolic Quasi-Variational Inequalities
椭圆和抛物型拟变分不等式的最优控制
- 批准号:
314216459 - 财政年份:2016
- 资助金额:
-- - 项目类别:
Priority Programmes
Free Boundary Problems and Level-Set Methods
自由边界问题和水平集方法
- 批准号:
271730094 - 财政年份:2015
- 资助金额:
-- - 项目类别:
Research Grants
Fully adaptive and integrated numerical methods for the simulation and control of variable density multiphase flows governed by diffuse interface models.
用于模拟和控制由扩散界面模型控制的变密度多相流的完全自适应和集成数值方法。
- 批准号:
238092916 - 财政年份:2013
- 资助金额:
-- - 项目类别:
Priority Programmes
Elliptic Mathematical Programs with Equilibrium Constraints (MPECs) in function space: optimality conditions and numerical realization
函数空间中具有平衡约束(MPEC)的椭圆数学规划:最优性条件和数值实现
- 批准号:
132218111 - 财政年份:2009
- 资助金额:
-- - 项目类别:
Priority Programmes
相似国自然基金
LIPUS促进微环境巨噬细胞释放CCL2诱导尿道周围平滑肌祖细胞定植与分化的机制研究
- 批准号:82370780
- 批准年份:2023
- 资助金额:49.00 万元
- 项目类别:面上项目
硫化氢通过核转录因子-kB信号途径调节高血压大鼠血管平滑肌细胞增殖的研究
- 批准号:81070212
- 批准年份:2010
- 资助金额:33.0 万元
- 项目类别:面上项目
骨髓基质干细胞体外构建耳廓形态软骨
- 批准号:30973131
- 批准年份:2009
- 资助金额:35.0 万元
- 项目类别:面上项目
肿瘤抑制基因PTEN对人气道平滑肌增殖、凋亡和迁移的影响
- 批准号:30770936
- 批准年份:2007
- 资助金额:30.0 万元
- 项目类别:面上项目
相似海外基金
Evaluating the efficacy of Butyric acid pro-drug nanoparticle in retinal neuroprotection
评估丁酸前药纳米颗粒在视网膜神经保护中的功效
- 批准号:
10602346 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Evaluation of anti-fibrotic and anti-inflammatory semi-synthetic oxysterol, Oxy210, as a therapeutic drug candidate for non-alcoholic steatohepatitis
抗纤维化和抗炎半合成氧甾醇 Oxy210 作为非酒精性脂肪性肝炎候选治疗药物的评价
- 批准号:
10697132 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Targeting T2 inflammation-evoked mechanical endotypes of ASM shortening in asthma
靶向哮喘中 ASM 缩短的 T2 炎症诱发机械内型
- 批准号:
10657988 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Targeting The GLP-1 Receptor As New Chronotherapy Against Nondipping Blood Pressure In Diabetes
靶向 GLP-1 受体作为对抗糖尿病非下降血压的新计时疗法
- 批准号:
10672174 - 财政年份:2022
- 资助金额:
-- - 项目类别:
Development and identification of magnetic resonance, electrophysiological, and fiber-optic imaging biomarkers of myofascial pain
肌筋膜疼痛的磁共振、电生理学和光纤成像生物标志物的开发和鉴定
- 批准号:
10580406 - 财政年份:2022
- 资助金额:
-- - 项目类别:
In vivo vascular delivery of an MK2 inhibitory peptide for the prevention of smooth muscle cell phenotype switch and intimal hyperplasia.
MK2 抑制肽的体内血管递送可预防平滑肌细胞表型转换和内膜增生。
- 批准号:
10729846 - 财政年份:2022
- 资助金额:
-- - 项目类别:
Effect of a semi-synthetic oxysterol drug candidate, Oxy210, on atherosclerosis in a mouse model of NASH
半合成氧甾醇候选药物 Oxy210 对 NASH 小鼠模型动脉粥样硬化的影响
- 批准号:
10474926 - 财政年份:2022
- 资助金额:
-- - 项目类别:
Electrical excitability in vascular smooth muscle: from rare disease to new paradigms
血管平滑肌的电兴奋性:从罕见疾病到新范例
- 批准号:
10578997 - 财政年份:2022
- 资助金额:
-- - 项目类别: