Elliptic Mathematical Programs with Equilibrium Constraints (MPECs) in function space: optimality conditions and numerical realization
函数空间中具有平衡约束(MPEC)的椭圆数学规划:最优性条件和数值实现
基本信息
- 批准号:132218111
- 负责人:
- 金额:--
- 依托单位:
- 依托单位国家:德国
- 项目类别:Priority Programmes
- 财政年份:2009
- 资助国家:德国
- 起止时间:2008-12-31 至 2014-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The project work concentrates on the development of a first and second order optimality theory as well as the design and implementation of efficient solution algorithms for certain classes of mathematical programs with equilibrium constraints (MPECs) in function space. The optimization-theoretic treatment of MPECs is complicated by the degeneracy of the constraint set and the resulting ambiguities in associated concepts for characterizing optimal solutions. In this respect, the project work develops new mathematical technqiues for deriving and categorizing such optimality conditions. Since discretized MPECs result in large scale problems, tailored numerical solution techniques relying on adaptive finite element methods, semismooth Newton and multilevel techniques are developed.The problem class under investigation is of importance as the involved constraints, which are either quasi-variational inequalities or variational inequalities of the second kind, cover a wide range of applications from Bingham fluids or contact with friction, the magnetization of type-II superconductors or torsion problems in plasticity to the ionization in electrostatics. The associated MPEC formulation typically aims at optimally controlling or designing the underlying system. Within the project work these applications will be studied as well.
该项目的工作集中在一阶和二阶最优性理论的发展,以及设计和实施有效的解决方案算法的某些类的数学规划与平衡约束(MPEC)在函数空间。MPECs的优化理论处理是复杂的退化的约束集和由此产生的模糊性在相关的概念来表征最优解。在这方面,项目工作开发了新的数学技术,用于推导和分类这种最优性条件。由于离散化后的MPEC会导致大规模的问题,因此发展了依赖于自适应有限元方法、半光滑牛顿法和多层技术的定制数值求解技术。所研究的问题类是重要的,因为所涉及的约束要么是拟变分不等式,要么是第二类变分不等式,涵盖了从宾汉流体到摩擦接触的广泛应用,第二类超导体的磁化或塑性中的扭转问题到静电学中的电离。相关的MPEC公式通常旨在最佳地控制或设计基础系统。在项目工作中,也将研究这些应用。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Professor Dr. Michael Hintermüller其他文献
Professor Dr. Michael Hintermüller的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Professor Dr. Michael Hintermüller', 18)}}的其他基金
A non-smooth phase-field approach to shape optimization with instationary fluid flow
非稳态流体流动形状优化的非光滑相场方法
- 批准号:
423457678 - 财政年份:2019
- 资助金额:
-- - 项目类别:
Priority Programmes
Simulation and Control of a Nonsmooth Cahn-Hilliard Navier-Stokes System with Variable Fluid Densities
可变流体密度非光滑 Cahn-Hilliard Navier-Stokes 系统的仿真与控制
- 批准号:
313972219 - 财政年份:2016
- 资助金额:
-- - 项目类别:
Priority Programmes
Generalized Nash Equilibrium Problems with Partial Differential Operators: Theory, Algorithms, and Risk Aversion
偏微分算子的广义纳什均衡问题:理论、算法和风险规避
- 批准号:
314141981 - 财政年份:2016
- 资助金额:
-- - 项目类别:
Priority Programmes
Optimal Control of Elliptic and Parabolic Quasi-Variational Inequalities
椭圆和抛物型拟变分不等式的最优控制
- 批准号:
314216459 - 财政年份:2016
- 资助金额:
-- - 项目类别:
Priority Programmes
Free Boundary Problems and Level-Set Methods
自由边界问题和水平集方法
- 批准号:
271730094 - 财政年份:2015
- 资助金额:
-- - 项目类别:
Research Grants
Fully adaptive and integrated numerical methods for the simulation and control of variable density multiphase flows governed by diffuse interface models.
用于模拟和控制由扩散界面模型控制的变密度多相流的完全自适应和集成数值方法。
- 批准号:
238092916 - 财政年份:2013
- 资助金额:
-- - 项目类别:
Priority Programmes
相似海外基金
Inverse Optimization for Imputing Constraints in Mathematical Programs
数学程序中输入约束的逆优化
- 批准号:
2402419 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Standard Grant
Inverse Optimization for Imputing Constraints in Mathematical Programs
数学程序中输入约束的逆优化
- 批准号:
2153155 - 财政年份:2022
- 资助金额:
-- - 项目类别:
Standard Grant
Report on the Nation's Undergraduate Mathematical Sciences Programs: Year Fifty of a Longitudinal Survey of Two-year and Four-year Institutions
全国本科数学科学项目报告:两年制和四年制院校纵向调查五十年
- 批准号:
1916764 - 财政年份:2019
- 资助金额:
-- - 项目类别:
Standard Grant
Development of new preschool and elementary school play programs based on collaboration between elementary and elementary school children that enhances both non-cognitive and mathematical skills.
基于中小学生之间的合作,开发新的学前班和小学游戏项目,提高非认知和数学技能。
- 批准号:
19K03127 - 财政年份:2019
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Scientific Research (C)
Programs at the Fields Institute for Research in Mathematical Sciences
菲尔兹数学科学研究所的项目
- 批准号:
1819033 - 财政年份:2018
- 资助金额:
-- - 项目类别:
Standard Grant
Optimization methods for mathematical programs with equilibrium constraints in function spaces based on adaptive error control and reduced order or low rank tensor approximations
基于自适应误差控制和降阶或低秩张量近似的函数空间中具有平衡约束的数学程序的优化方法
- 批准号:
314151277 - 财政年份:2016
- 资助金额:
-- - 项目类别:
Priority Programmes
Exploration of Conic Linear Programs and Development of Mathematical Modeling
二次曲线线性规划的探索与数学模型的发展
- 批准号:
15H02968 - 财政年份:2015
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Scientific Research (B)
CBMS2015: A Study of Undergraduate Programs in the Mathematical and Statistical Sciences in the United States and the Publication of the Results
CBMS2015:美国数学与统计科学本科专业研究及结果发表
- 批准号:
1441478 - 财政年份:2015
- 资助金额:
-- - 项目类别:
Standard Grant
Programs at the Fields Institute for Research in Mathematical Sciences
菲尔兹数学科学研究所的项目
- 批准号:
1343962 - 财政年份:2014
- 资助金额:
-- - 项目类别:
Continuing Grant
Stochastic mathematical programs with equilibrium constraints
具有平衡约束的随机数学程序
- 批准号:
311631-2009 - 财政年份:2014
- 资助金额:
-- - 项目类别:
Discovery Grants Program - Individual