Optimal Control of Elliptic and Parabolic Quasi-Variational Inequalities

椭圆和抛物型拟变分不等式的最优控制

基本信息

项目摘要

Quasi-variational inequalities (QVIs) often arise in applications where non-smooth and nonlinear phenomena lead to complex state-dependent constraints. They can be used to describe, for instance, the magnetization of superconductors, thermoplastic effects in torsion, the behavior of granular material, or the chemotactic behavior of bacteria in competition. Mathematically, the solutions to these problems are not unique and their dependence on input quantities (data, controls, etc.) is non-smooth.This project is devoted to analyzing and numerically solving optimal control problems associated with elliptic and parabolic QVIs. The research work is organized as follows:(a) It starts with the development of function-space based solution algorithms for QVIs tailored to constraints of obstacle- or gradient-type. In particular, we aim at path-following semi smooth Newton schemes which exhibit fast local mesh-independent convergence.(b) Then it focuses on an enhanced solution theory for the underlying QVIs. More specifically, properties of the minimal and maximal solutions will be studied along with associated (differential) stability and numerical approximation schemes.(c) Then, in a two progressively more demanding research steps, stationary conditions for optimal control problems for the QVIs of interest will be derived. These optimization problems fall into the realm of mathematical programs with equilibrium constraints (MPECs) in function space. In technical terms, in our stationarity considerations two smoothing approaches will be pursued, one utilizing a Moreau-Yosida technique and the the other one relying on a technique modifying the underlying differential operators. (d) Finally, bundle-free implicit programming methods for the numerical solution of the MPEC under consideration are pursued. These also involve relaxation and path-following techniques, and advanced discretization schemes. The analytical as well as numerical advance in the project work will be validated against prototypical applications. These involve in particular the magnetization of superconductors, thermoplastic effects in torsion, the behavior of granular material, and the chemotactic behavior of bacteria in competition.
拟变分不等式(QVI)经常出现在非光滑和非线性现象导致复杂的状态依赖约束的应用中。例如,它们可以用来描述超导体的磁化、扭转中的热塑性效应、颗粒材料的行为或竞争中细菌的趋化行为。从数学上讲,这些问题的解决方案不是唯一的,它们依赖于输入量(数据,控件等)。本计画致力于分析与数值求解与椭圆型与抛物型QVI相关的最佳控制问题。研究工作的组织如下:(a)它开始与开发的功能空间为基础的解决方案算法的QVI定制的障碍或梯度型的约束。特别是,我们的目标是路径跟踪半光滑牛顿计划,表现出快速的局部网格无关收敛。(b)然后,它集中在一个增强的解决方案理论的基础QVI。更具体地说,最小和最大的解决方案的性质将研究沿着与相关的(微分)稳定性和数值逼近方案。(c)然后,在两个逐步要求更高的研究步骤中,将导出感兴趣的QVI的最优控制问题的平稳条件。这些优化问题属于函数空间中具有平衡约束的数学规划(MPEC)的范畴。在技术方面,在我们的平稳性考虑两个平滑的方法将被追求,一个利用Moreau-Yosida技术,另一个依赖于一种技术修改的基础微分算子。(d)最后,无故障隐式编程方法的数值解的MPEC正在考虑追求。这些还涉及松弛和路径跟踪技术,以及先进的离散化方案。项目工作中的分析和数值方面的进展将在原型应用中得到验证。这些特别涉及超导体的磁化、扭转中的热塑性效应、颗粒材料的行为以及细菌在竞争中的趋化行为。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Professor Dr. Michael Hintermüller其他文献

Professor Dr. Michael Hintermüller的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Professor Dr. Michael Hintermüller', 18)}}的其他基金

A non-smooth phase-field approach to shape optimization with instationary fluid flow
非稳态流体流动形状优化的非光滑相场方法
  • 批准号:
    423457678
  • 财政年份:
    2019
  • 资助金额:
    --
  • 项目类别:
    Priority Programmes
Simulation and Control of a Nonsmooth Cahn-Hilliard Navier-Stokes System with Variable Fluid Densities
可变流体密度非光滑 Cahn-Hilliard Navier-Stokes 系统的仿真与控制
  • 批准号:
    313972219
  • 财政年份:
    2016
  • 资助金额:
    --
  • 项目类别:
    Priority Programmes
Coordination Funds
协调基金
  • 批准号:
    314302824
  • 财政年份:
    2016
  • 资助金额:
    --
  • 项目类别:
    Priority Programmes
Generalized Nash Equilibrium Problems with Partial Differential Operators: Theory, Algorithms, and Risk Aversion
偏微分算子的广义纳什均衡问题:理论、算法和风险规避
  • 批准号:
    314141981
  • 财政年份:
    2016
  • 资助金额:
    --
  • 项目类别:
    Priority Programmes
Free Boundary Problems and Level-Set Methods
自由边界问题和水平集方法
  • 批准号:
    271730094
  • 财政年份:
    2015
  • 资助金额:
    --
  • 项目类别:
    Research Grants
Fully adaptive and integrated numerical methods for the simulation and control of variable density multiphase flows governed by diffuse interface models.
用于模拟和控制由扩散界面模型控制的变密度多相流的完全自适应和集成数值方法。
  • 批准号:
    238092916
  • 财政年份:
    2013
  • 资助金额:
    --
  • 项目类别:
    Priority Programmes
Elliptic Mathematical Programs with Equilibrium Constraints (MPECs) in function space: optimality conditions and numerical realization
函数空间中具有平衡约束(MPEC)的椭圆数学规划:最优性条件和数值实现
  • 批准号:
    132218111
  • 财政年份:
    2009
  • 资助金额:
    --
  • 项目类别:
    Priority Programmes

相似国自然基金

Cortical control of internal state in the insular cortex-claustrum region
  • 批准号:
  • 批准年份:
    2020
  • 资助金额:
    25 万元
  • 项目类别:

相似海外基金

Development of a Cell-Based Assay for Tetanus Vaccine Quality Control
破伤风疫苗质量控制细胞检测方法的开发
  • 批准号:
    10101986
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Collaborative R&D
Nuclear RNA surveillance and its connection to splicing quality control
核 RNA 监测及其与剪接质量控制的联系
  • 批准号:
    DP240102611
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Discovery Projects
Nanoengineered hybrid coatings that control inflammation to artificial bone
控制人造骨炎症的纳米工程混合涂层
  • 批准号:
    DP240103271
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Discovery Projects
Host-Guest Complexation: A Modular Approach for Structural Control (MAS-Control) in Supramolecular Polymerization
主客体络合:超分子聚合中结构控制(MAS-Control)的模块化方法
  • 批准号:
    EP/Y027965/1
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Fellowship
Evaluating the effectiveness and sustainability of integrating helminth control with seasonal malaria chemoprevention in West African children
评估西非儿童蠕虫控制与季节性疟疾化学预防相结合的有效性和可持续性
  • 批准号:
    MR/X023133/1
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Fellowship
Atomic Anxiety in the New Nuclear Age: How Can Arms Control and Disarmament Reduce the Risk of Nuclear War?
新核时代的原子焦虑:军控与裁军如何降低核战争风险?
  • 批准号:
    MR/X034690/1
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Fellowship
Control of pulsatile reproductive hormone secretion by sleep-wake transitions
通过睡眠-觉醒转换控制脉动生殖激素分泌
  • 批准号:
    BB/Y003578/1
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Research Grant
Bacteriophage control of host cell DNA transactions by small ORF proteins
噬菌体通过小 ORF 蛋白控制宿主细胞 DNA 交易
  • 批准号:
    BB/Y004426/1
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Research Grant
Ready, Aim, Fire: understanding Sfa2-mediated control of the Type VI secretion system for interbacterial competition and invasion
准备、瞄准、开火:了解 Sfa2 介导的 VI 型分泌系统对细菌间竞争和入侵的控制
  • 批准号:
    BB/Y00048X/1
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Research Grant
Haptic Shared Control Systems And A Neuroergonomic Approach To Measuring System Trust
触觉共享控制系统和测量系统信任的神经工学方法
  • 批准号:
    EP/Y00194X/1
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Research Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了