FOrecasting radiation foG by combining station and satellite data using Machine Learning (FOG-ML)

使用机器学习 (FOG-ML) 结合站和卫星数据来预测辐射 FoG

基本信息

项目摘要

Fog and the associated poor visibility conditions particularly impair safety in car, ship and air traffic. In this context, an accurate forecast of fog formation and resolution as early as possible can make a significant contribution to improving traffic safety and management. However, due to the complexity of the physical processes as well as the effects of local topography and weather influences on fog dynamics, the exact prediction of ground fog using numerical models remains difficult until now. In contrast, machine learning methods show promising results with regard to fog prediction and represent a real alternative to numerical fog prediction. However, the previous machine learning methods for fog forecasting were only developed for selected stations and do not take into account the explicit recording of the temporal and spatial aspects of fog development in the vicinity of the respective stations. Here the combination of local measurements and spatially high-resolution satellite data can contribute to an improvement of the fog prediction. Machine learning methods offer the potential to optimally combine large amounts of data with different properties and to make them usable for fog prediction. However, so far there is no machine learning based method for fog prediction using station measurements and spatially high-resolution satellite data.Based on the previous experiences within the working group of the applicants regarding the use of machine learning methods for satellite-based fog detection and precipitation remote sensing, a nationwide fog prediction system for Germany (formation and resolution) based on the combination of station data and MSG SEVIRI (Meteosat Second Generation Spinning Enhanced Visible and Infrared Imager) Rapid Scan data of the fog-relevant variables shall be developed in the project. Such an approach, taking into account all temporally and spatially relevant variables, ensures on the one hand the optimal use of the available information for an improved fog prediction and on the other hand opens up the possibility of area-wide predictions of fog formation and fog resolution in high spatial-temporal resolution. In view of the great societal relevance and the high demand for reliable high-resolution fog forecasts, the project represents an essential contribution to better modelling this phenomenon.
雾和相关的低能见度条件特别损害汽车,船舶和空中交通的安全。在这种情况下,尽早准确预测雾的形成和解决方案可以为改善交通安全和管理做出重大贡献。然而,由于雾的物理过程的复杂性以及局地地形和天气对雾动力学的影响,迄今为止,利用数值模式对雾进行准确预报仍然是困难的。相比之下,机器学习方法在雾预测方面显示出有希望的结果,并代表了数值雾预测的真实的替代方案。然而,以前用于雾预报的机器学习方法仅针对选定的站点开发,并且没有考虑到明确记录各个站点附近雾发展的时间和空间方面。在这里,当地的测量和空间高分辨率的卫星数据的组合可以有助于改善雾的预测。机器学习方法提供了最佳的联合收割机组合大量数据与不同属性,使它们可用于雾预测的潜力。然而,到目前为止,还没有基于机器学习的方法用于使用站点测量和空间高分辨率卫星数据进行雾预测。基于申请人工作组内关于将机器学习方法用于基于卫星的雾检测和降水遥感的先前经验,德国全国雾预报系统基于台站数据和MSG SEVIRI的组合(形成和分辨率)(气象卫星第二代旋转增强型可见光和红外成像仪)应在本项目中开发与雾有关的变量的快速扫描数据。这种方法,考虑到所有的时间和空间相关的变量,确保一方面的可用信息的最佳使用,以改善雾的预测,另一方面开辟了雾的形成和雾的分辨率在高时空分辨率的区域范围内的预测的可能性。鉴于巨大的社会相关性和对可靠的高分辨率雾预报的高需求,该项目代表了对更好地模拟这一现象的重要贡献。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Professor Dr. Jörg Bendix其他文献

Professor Dr. Jörg Bendix的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Professor Dr. Jörg Bendix', 18)}}的其他基金

Vegetation control on long-term to short-term landscape evolution from thermochronology and remote sensing
热年代学和遥感对长期到短期景观演变的植被控制
  • 批准号:
    408246671
  • 财政年份:
    2018
  • 资助金额:
    --
  • 项目类别:
    Priority Programmes
Coordination Funds
协调基金
  • 批准号:
    395625742
  • 财政年份:
    2018
  • 资助金额:
    --
  • 项目类别:
    Research Units
CorsiClimAte - Seasonal and topographic partitioning of vapor transport, cloud and precipitation in Corsica, with special reference to PBL height
CorsiClimAte - 科西嘉岛水汽输送、云和降水的季节和地形分区,特别参考 PBL 高度
  • 批准号:
    318140078
  • 财政年份:
    2016
  • 资助金额:
    --
  • 项目类别:
    Research Grants
Remote Sensing of precipitation (RS)
降水遥感(RS)
  • 批准号:
    320406546
  • 财政年份:
    2016
  • 资助金额:
    --
  • 项目类别:
    Research Grants
Structure and function of biocrusts in weathering, soil formation and erosion processes (CRUSTWEATHERING).
风化、土壤形成和侵蚀过程中生物结皮的结构和功能(CRUSTWEATHERING)。
  • 批准号:
    280661654
  • 财政年份:
    2015
  • 资助金额:
    --
  • 项目类别:
    Priority Programmes
Ground fog detection and analysis with Machine Learning (GFog-ML)
使用机器学习进行地面雾检测和分析 (GFog-ML)
  • 批准号:
    270101240
  • 财政年份:
    2015
  • 资助金额:
    --
  • 项目类别:
    Research Grants
Remote sensing as surrogate for phylodiversity and functional processes along land use and elevation gradients
遥感作为土地利用和海拔梯度沿线的系统多样性和功能过程的替代
  • 批准号:
    227674658
  • 财政年份:
    2013
  • 资助金额:
    --
  • 项目类别:
    Research Grants (Transfer Project)
Climate indicators on the local scale for past, present and future and platform data management
当地过去、现在和未来的气候指标以及平台数据管理
  • 批准号:
    227693446
  • 财政年份:
    2013
  • 资助金额:
    --
  • 项目类别:
    Research Grants (Transfer Project)
Development of area-wide functional indicators using remotely sensed data
利用遥感数据制定区域功能指标
  • 批准号:
    233599952
  • 财政年份:
    2013
  • 资助金额:
    --
  • 项目类别:
    Research Grants (Transfer Project)
Operational rainfall monitoring in southern Ecuador. Towards the development of a national weather radar network.
厄瓜多尔南部的业务降雨量监测。
  • 批准号:
    216340640
  • 财政年份:
    2012
  • 资助金额:
    --
  • 项目类别:
    Research Grants (Transfer Project)

相似国自然基金

NbZrTi基多主元合金中化学不均匀性对辐照行为的影响研究
  • 批准号:
    12305290
  • 批准年份:
    2023
  • 资助金额:
    30.00 万元
  • 项目类别:
    青年科学基金项目
低剂量辐射通过CXCR4途径介导糖尿病大鼠内皮祖细胞的归巢机制
  • 批准号:
    81300660
  • 批准年份:
    2013
  • 资助金额:
    23.0 万元
  • 项目类别:
    青年科学基金项目
电离辐射诱发间充质干细胞基因组非稳定性的研究
  • 批准号:
    31070759
  • 批准年份:
    2010
  • 资助金额:
    34.0 万元
  • 项目类别:
    面上项目
常山酮增强肺癌放疗效果同时预防放射性肺损伤的分子机制研究
  • 批准号:
    30970864
  • 批准年份:
    2009
  • 资助金额:
    29.0 万元
  • 项目类别:
    面上项目
Wnt/β-catenin信号通路介导microRNAs调控食管癌干细胞放射敏感性研究
  • 批准号:
    30972962
  • 批准年份:
    2009
  • 资助金额:
    28.0 万元
  • 项目类别:
    面上项目

相似海外基金

Topological semiconductors resonate with an elusive form of radiation
拓扑半导体与难以捉摸的辐射形式产生共振
  • 批准号:
    DP240101062
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Discovery Projects
Can megafauna shift the carbon and surface radiation budgets of the Arctic?
巨型动物群能否改变北极的碳和地表辐射预算?
  • 批准号:
    NE/W00089X/2
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Research Grant
A Unified Understanding of the Earth's Radiation Environment
对地球辐射环境的统一认识
  • 批准号:
    NE/Z000157/1
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Research Grant
CAREER: Hybridization and radiation: Integrating across phylogenomics, ancestral niche evolution, and pollination biology
职业:杂交和辐射:系统基因组学、祖先生态位进化和授粉生物学的整合
  • 批准号:
    2337784
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
Collaborative Research: Unlocking the evolutionary history of Schiedea (carnation family, Caryophyllaceae): rapid radiation of an endemic plant genus in the Hawaiian Islands
合作研究:解开石竹科(石竹科)石竹的进化史:夏威夷群岛特有植物属的快速辐射
  • 批准号:
    2426560
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
CAREER: Precise Mathematical Modeling and Experimental Validation of Radiation Heat Transfer in Complex Porous Media Using Analytical Renewal Theory Abstraction-Regressions
职业:使用分析更新理论抽象回归对复杂多孔介质中的辐射传热进行精确的数学建模和实验验证
  • 批准号:
    2339032
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
CAREER: Understanding Radiation Belt Electron Fast, Deep Injections in the Inner Magnetosphere
职业:了解辐射带电子在内磁层的快速、深层注入
  • 批准号:
    2338125
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
Proton radiation therapy combined with immunotherapy for enhancing antitumor immune responses in pancreatic cancer murine models.
质子放射治疗与免疫治疗相结合,增强胰腺癌小鼠模型的抗肿瘤免疫反应。
  • 批准号:
    24K10423
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Designing Rational Combinations to Improve CAR T Cell Therapy for Prostate Cancer
设计合理的组合以改善前列腺癌的 CAR T 细胞疗法
  • 批准号:
    10752046
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
Greatwall in replication stress/DNA damage responses and oral cancer resistance
长城在复制应激/DNA损伤反应和口腔癌抵抗中的作用
  • 批准号:
    10991546
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了