Identification of mechanisms underlying the attenuation of viruses by codon pair deoptimization

通过密码子对去优化鉴定病毒减毒机制

基本信息

项目摘要

Vaccine development using traditional approaches is time-consuming, laborious and unpredictable and fails when response to newly emerging infectious diseases is needed the most. Attenuation by codon pair deoptimization (CPD) is a new strategy that has enabled highly efficient and rapid attenuation of a wide variety of viruses, including poliovirus and Dengue virus. The attenuation by CPD is based on large-scale recoding of viral genomes. It involves reshuffling of codons in viral genes without changing the codon bias or amino acid composition of the encoded proteins. The goal of reshuffling is to maximize the number of codon pairs that are underrepresented in the host genome, because codon pair deoptimized viruses replicate much less efficiently as their wild type parents. CPD has an immense potential, because it is applicable for attenuation of many animal or human viruses and other pathogens. The major drawback of the CPD approach is, however, that the molecular mechanisms that result in attenuation have remained elusive. CPD introduces several hundred nucleotide mutations into recoded genes, but it is not known which of the introduced genetic changes are responsible for attenuation. Until this problem is solved it will not be possible to utilize recoded viral vaccines in the clinical settings. Also, it will not be possible examine the reversion of attenuation through monitoring of genetic changes in attenuated viruses. Once we understand the molecular basis of attenuation by CPD it will be possible to refine the attenuation design and produce better and safer viral vaccines. The main goal of this project is to identify the exact molecular mechanisms that underlie the attenuation by CPD. To attain the objective of this project we will use H1N1 influenza virus, an important human pathogen, as a model virus. We have prepared a series of recoded H1N1 mutants in which we independently varied two main sequence features that are suspected to underlie the attenuation – the number and type of underrepresented codon pairs, and the number of CpG dinucleotides. Our preliminary studies are key for this proposal, because they unequivocally confirmed that introduction of underrepresented codon pairs, but not CpG dinucleotides into recoded genes leads to attenuation of recoded viruses in vitro. During this project we will solve four major unknowns of the attenuation by CPD. We will i) identify exactly which codon pairs are principally responsible for attenuation of recoded viruses; ii) establish how underrepresented codon pairs perturb molecular mechanisms that lead to attenuation; iii) quantify the capacity of attenuated viruses to revert to virulence upon extensive passage in vitro; iv) compare the level of attenuation and vaccine efficacy of codon-deoptimized, codon pair-deoptimized, or CpG-maximized viruses and determine which of the three recoding methods is superior for attenuation of H1N1 virus in vivo.
使用传统方法开发疫苗耗时、费力且不可预测,而且在最需要应对新出现的传染病时失败。密码子对去优化(CPD)衰减是一种新的策略,能够高效、快速地衰减多种病毒,包括脊髓灰质炎病毒和登革热病毒。CPD的衰减是基于病毒基因组的大规模重编码。它涉及病毒基因中密码子的重组,而不改变密码子偏好或编码蛋白质的氨基酸组成。重组的目标是最大化宿主基因组中未充分代表的密码子对的数量,因为密码子对非优化病毒的复制效率比其野生型亲本低得多。CPD具有巨大的潜力,因为它适用于许多动物或人类病毒和其他病原体的衰减。然而,CPD方法的主要缺点是导致衰减的分子机制仍然难以捉摸。CPD在重新编码的基因中引入了数百个核苷酸突变,但尚不清楚哪些引入的遗传变化负责衰减。在这个问题得到解决之前,将不可能在临床环境中使用编码病毒疫苗。此外,也不可能通过监测减毒病毒的遗传变化来检查减毒的逆转。一旦我们了解了CPD衰减的分子基础,就有可能改进衰减设计并生产更好、更安全的病毒疫苗。该项目的主要目标是确定CPD衰减的确切分子机制。为了实现这个项目的目标,我们将使用一种重要的人类病原体H1N1流感病毒作为模型病毒。我们准备了一系列重新编码的H1N1突变体,我们独立地改变了两个主要的序列特征,这两个特征被怀疑是导致衰减的基础——未被代表的密码子对的数量和类型,以及CpG二核苷酸的数量。我们的初步研究是这一建议的关键,因为他们明确地证实,将未被代表的密码子对而不是CpG二核苷酸引入到重新编码的基因中会导致体外重新编码病毒的衰减。在这个项目中,我们将通过CPD解决衰减的四个主要未知数。我们将i)准确地确定哪些密码子对主要负责编码病毒的衰减;Ii)确定未被充分代表的密码子对如何扰乱导致衰减的分子机制;Iii)量化减毒病毒在体外广泛传代后恢复毒力的能力;iv)比较去密码子优化病毒、去密码子对优化病毒和cpg最大化病毒的衰减水平和疫苗效果,确定三种重新编码方法中哪一种在体内对H1N1病毒的衰减效果更好。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Privatdozent Dr. Michael Veit, since 7/2020其他文献

Privatdozent Dr. Michael Veit, since 7/2020的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

相似国自然基金

Exploring the Intrinsic Mechanisms of CEO Turnover and Market
  • 批准号:
  • 批准年份:
    2024
  • 资助金额:
    万元
  • 项目类别:
    外国学者研究基金
Exploring the Intrinsic Mechanisms of CEO Turnover and Market Reaction: An Explanation Based on Information Asymmetry
  • 批准号:
    W2433169
  • 批准年份:
    2024
  • 资助金额:
    万元
  • 项目类别:
    外国学者研究基金项目
Foxc2介导Syap1/Akt信号通路调控破骨/成骨细胞分化促进颞下颌关节骨关节炎的机制研究
  • 批准号:
    82370979
  • 批准年份:
    2023
  • 资助金额:
    48.00 万元
  • 项目类别:
    面上项目
Erk1/2/CREB/BDNF通路在CSF1R相关性白质脑病致病机制中的作用研究
  • 批准号:
    82371255
  • 批准年份:
    2023
  • 资助金额:
    49.00 万元
  • 项目类别:
    面上项目
MYRF/SLC7A11调控施万细胞铁死亡在三叉神经痛脱髓鞘病变中的作用和分子机制研究
  • 批准号:
    82370981
  • 批准年份:
    2023
  • 资助金额:
    48.00 万元
  • 项目类别:
    面上项目
Idh3a作为线粒体代谢—表观遗传检查点调控产热脂肪功能的机制研究
  • 批准号:
    82370851
  • 批准年份:
    2023
  • 资助金额:
    48.00 万元
  • 项目类别:
    面上项目
用于小尺寸管道高分辨成像荧光聚合物点的构建、成像机制及应用研究
  • 批准号:
    82372015
  • 批准年份:
    2023
  • 资助金额:
    48.00 万元
  • 项目类别:
    面上项目
小脑浦肯野细胞突触异常在特发性震颤中的作用机制及靶向干预研究
  • 批准号:
    82371248
  • 批准年份:
    2023
  • 资助金额:
    47.00 万元
  • 项目类别:
    面上项目
声致离子电流促进小胶质细胞M2极化阻断再生神经瘢痕退变免疫机制
  • 批准号:
    82371973
  • 批准年份:
    2023
  • 资助金额:
    48.00 万元
  • 项目类别:
    面上项目
GREB1突变介导雌激素受体信号通路导致深部浸润型子宫内膜异位症的分子遗传机制研究
  • 批准号:
    82371652
  • 批准年份:
    2023
  • 资助金额:
    45.00 万元
  • 项目类别:
    面上项目

相似海外基金

Elucidation of the mechanisms underlying drug-resistance and identification of candidate drugs of gynecologic neuroendocrine tumors using patient-derived organoids
利用患者来源的类器官阐明妇科神经内分泌肿瘤的耐药机制并鉴定候选药物
  • 批准号:
    23K08836
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Identification of the mechanisms underlying the early stages of leukemogenesis in human hematopoietic stem cells.
鉴定人类造血干细胞白血病发生早期的机制。
  • 批准号:
    463108
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
    Operating Grants
Identification of Molecular Mechanisms underlying Reciprocal Responses in the Interaction between Arabidopsis and the Cell-Content-Feeding Chelicerate Herbivore Spider Mite
拟南芥与以细胞内容物为食的螯肢食草动物蜘蛛相互作用中相互反应的分子机制的鉴定
  • 批准号:
    RGPIN-2018-04538
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
    Discovery Grants Program - Individual
Identification of Molecular Mechanisms underlying Reciprocal Responses in the Interaction between Arabidopsis and the Cell-Content-Feeding Chelicerate Herbivore Spider Mite
拟南芥与以细胞内容物为食的螯肢食草动物蜘蛛相互作用中相互反应的分子机制的鉴定
  • 批准号:
    RGPIN-2018-04538
  • 财政年份:
    2021
  • 资助金额:
    --
  • 项目类别:
    Discovery Grants Program - Individual
Dynamics of pollution transport in constructed wetlands: identification and quantification of underlying physical mechanisms of solute and solid (micr
人工湿地中污染传输的动态:溶质和固体的潜在物理机制的识别和量化(微观
  • 批准号:
    2597253
  • 财政年份:
    2021
  • 资助金额:
    --
  • 项目类别:
    Studentship
Molecular mechanisms underlying the cessation of JH biosynthesis in the corpora allata; Identification of the final instar-specific JHAMT inhibitory transcription factors
阿拉塔体内 JH 生物合成停止的分子机制;
  • 批准号:
    21K20587
  • 财政年份:
    2021
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Research Activity Start-up
Identification of Molecular Mechanisms underlying Reciprocal Responses in the Interaction between Arabidopsis and the Cell-Content-Feeding Chelicerate Herbivore Spider Mite
拟南芥与以细胞内容物为食的螯肢食草动物蜘蛛相互作用中相互反应的分子机制的鉴定
  • 批准号:
    RGPIN-2018-04538
  • 财政年份:
    2020
  • 资助金额:
    --
  • 项目类别:
    Discovery Grants Program - Individual
Identification of cells and signaling mechanisms underlying opioid analgesia and side effects
鉴定阿片类镇痛和副作用背后的细胞和信号机制
  • 批准号:
    10165682
  • 财政年份:
    2020
  • 资助金额:
    --
  • 项目类别:
Identification of the molecular mechanisms underlying the enhanced cellular radiosensitivity of HPV-positive HNSCC cells using CRISPR/Cas activator and repressor libraries
使用 CRISPR/Cas 激活剂和阻遏物文库鉴定 HPV 阳性 HNSCC 细胞放射敏感性增强的分子机制
  • 批准号:
    424907779
  • 财政年份:
    2019
  • 资助金额:
    --
  • 项目类别:
    Research Grants
Identification of Molecular Mechanisms underlying Reciprocal Responses in the Interaction between Arabidopsis and the Cell-Content-Feeding Chelicerate Herbivore Spider Mite
拟南芥与以细胞内容物为食的螯肢食草动物蜘蛛相互作用中相互反应的分子机制的鉴定
  • 批准号:
    RGPIN-2018-04538
  • 财政年份:
    2019
  • 资助金额:
    --
  • 项目类别:
    Discovery Grants Program - Individual
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了