Self-optimizing decentralized production control

自优化分散生产控制

基本信息

项目摘要

Facing a volatile market, an increasing variety of products and consequently increasingly complex manufacturing systems, production control is of particular importance in manufacturing. Due to the need for more frequent adaptation of process chains and production resources, centralized production control approaches are reaching their limits. In contrast, decentralized control approaches are characterized by high flexibility and quick adaptability. With the development of cyber-physical production systems (CPPS), technologies are now available for the first time with which comprehensive order-related data acquisition, communication between production components and the use of local computing capacities can be realized. This is an essential prerequisite for the introduction of decentralized control approaches. From a methodological point of view, however, local optimization tendencies of the algorithms represent a further obstacle. Experience-based consideration of the global optimum in local decision-making can eliminate this disadvantage.The main objective of the proposed project is the fundamental research of a method for decentralized production control that allows autonomous and variable decision-making with simultaneous experience-based self-optimization with regard to the global system performance of the production system. The method should take special account of the requirements of shop-floor production. In order to achieve the project goals, a suitable system architecture for decentralized production control is first examined within the framework of a CPPS. Subsequently, a method is conceived that allows decentralized and variable decision making with experience-based consideration of global system performance. The valuation basis required for this is formed by a system of key figures to be examined. A test environment is set up for the subsequent research. For this purpose, a simulation model of representative shop-floor production is first created. The software-implemented control method that controls the material flow within the simulation model is linked to this. Finally, simulation experiments are carried out within the framework of a structured test plan, which provide in-depth and scientifically substantial knowledge of the potentials and limits of the autonomous and learning control method being researched.
面对动荡的市场,越来越多的产品,以及因此而日益复杂的制造系统,生产控制在制造业中尤为重要。由于需要更频繁地调整流程链和生产资源,集中式生产控制方法正在达到其极限。相比之下,分散控制方法具有灵活性高、适应性强的特点。随着网络物理生产系统(CPPS)的发展,现在首次出现了能够实现与订单有关的全面数据采集、生产组件之间的通信和使用本地计算能力的技术。这是采用分散控制办法的基本先决条件。然而,从方法论的角度来看,算法的局部最优化倾向是另一个障碍。在局部决策中基于经验的全局最优考虑可以克服这一缺点。本项目的主要目标是研究一种分布式生产控制方法,该方法允许自主和可变的决策,同时关于生产系统的全局系统性能进行基于经验的自我优化。该方法应特别考虑车间生产的要求。为了实现项目目标,首先在CPPS的框架内研究了适用于分散生产控制的系统架构。随后,构思了一种方法,该方法允许在基于经验的基础上考虑全局系统性能的分散和可变决策。为此所需的估值基础是由一套要审查的关键数字系统构成的。为后续研究搭建了测试环境。为此,首先建立了典型车间生产的仿真模型。控制模拟模型内物质流动的软件实现的控制方法与此相关联。最后,在结构化测试计划的框架内进行了仿真实验,为所研究的自主学习控制方法的潜力和局限性提供了深入和科学的实质性知识。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Professor Dr.-Ing. Berend Denkena其他文献

Professor Dr.-Ing. Berend Denkena的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Professor Dr.-Ing. Berend Denkena', 18)}}的其他基金

Evaluation and adaptation of machining processes for the compensation of thermal and mechanical machining influences
评估和调整加工工艺以补偿热加工和机械加工影响
  • 批准号:
    429702029
  • 财政年份:
    2020
  • 资助金额:
    --
  • 项目类别:
    Research Grants (Transfer Project)
Multi-criteria personnel scheduling considering the robustness of production systems
考虑生产系统稳健性的多准则人员调度
  • 批准号:
    423805508
  • 财政年份:
    2019
  • 资助金额:
    --
  • 项目类别:
    Research Grants
Grinding behavior of sintered metal diamond grinding wheels with chemically bonded abrasive grains
化学结合磨粒烧结金属金刚石砂轮的磨削行为
  • 批准号:
    426703057
  • 财政年份:
    2019
  • 资助金额:
    --
  • 项目类别:
    Research Grants
Productivity increase in tool grinding with the help of a "sensing" spindle
借助“传感”主轴提高刀具磨削的生产率
  • 批准号:
    417859800
  • 财政年份:
    2019
  • 资助金额:
    --
  • 项目类别:
    Research Grants (Transfer Project)
Correlation of the process signals during grinding and the resulting workpiece quality
磨削过程中的过程信号与最终工件质量的相关性
  • 批准号:
    421461390
  • 财政年份:
    2019
  • 资助金额:
    --
  • 项目类别:
    Research Grants
Hard milling of micro dimples for friction and wear reduction in highly stressed bearing contacts
对微凹坑进行硬铣削,以减少高应力轴承接触中的摩擦和磨损
  • 批准号:
    407531729
  • 财政年份:
    2019
  • 资助金额:
    --
  • 项目类别:
    Research Grants
Effects of Detectable Defects (EDD) – Influence of production related defects in automated fiber placement processes in thin walled carbon fiber structures
可检测缺陷 (EDD) 的影响 â 薄壁碳纤维结构自动纤维铺放过程中生产相关缺陷的影响
  • 批准号:
    413627151
  • 财政年份:
    2019
  • 资助金额:
    --
  • 项目类别:
    Research Grants
Autonomous calculation of stability lobe diagrams, based on sensory structural compo-nents of a milling center
基于铣削中心的传感结构组件自主计算稳定性波瓣图
  • 批准号:
    416001186
  • 财政年份:
    2019
  • 资助金额:
    --
  • 项目类别:
    Research Grants
Surface generation during milling considering the tool micro geometry
铣削过程中考虑刀具微观几何形状的表面生成
  • 批准号:
    392316211
  • 财政年份:
    2018
  • 资助金额:
    --
  • 项目类别:
    Research Grants
Compensation of tool deflection based on drive currents
基于驱动电流的刀具偏转补偿
  • 批准号:
    399080398
  • 财政年份:
    2018
  • 资助金额:
    --
  • 项目类别:
    Research Grants (Transfer Project)

相似海外基金

SBIR Phase I: Optimizing Safety and Fuel Efficiency in Autonomous Rendezvous and Proximity Operations (RPO) of Uncooperative Objects
SBIR 第一阶段:优化不合作物体自主交会和邻近操作 (RPO) 的安全性和燃油效率
  • 批准号:
    2311379
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Optimizing Intelligent Vehicular Routing with Edge Computing through Multi-Agent Reinforcement Learning
通过多智能体强化学习利用边缘计算优化智能车辆路由
  • 批准号:
    24K14913
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Optimizing the STEM Teacher Recruitment, Development and Retention Pathway: Aligning STEM and Teaching Identities
优化 STEM 教师的招聘、发展和保留途径:协调 STEM 和教学身份
  • 批准号:
    2345197
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
I-Corps: Translation Potential of Optimizing Regression Testing in Software Development
I-Corps:软件开发中优化回归测试的转化潜力
  • 批准号:
    2405355
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
CAREER: Characterizing and Optimizing Control in Neural Interfaces
职业:表征和优化神经接口控制
  • 批准号:
    2338662
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
SBIR Phase I: Optimizing Composition of Novel Molten Alkali Metal Borates for Carbon Dioxide Capture
SBIR 第一阶段:优化用于二氧化碳捕获的新型熔融碱金属硼酸盐的成分
  • 批准号:
    2332658
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
SCC-PG: Internet of Waste: A Low-Cost Geospatial Sensor Network for Optimizing Solid Waste Management and Fostering Resident's Recycling Effectiveness Through Evidential Education
SCC-PG:废物互联网:通过循证教育优化固体废物管理并提高居民回收效率的低成本地理空间传感器网络
  • 批准号:
    2341996
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Automated, Scalable, and Machine Learning-Driven Approach for Generating and Optimizing Scientific Application Codes
用于生成和优化科学应用代码的自动化、可扩展且机器学习驱动的方法
  • 批准号:
    23K24856
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
SCC-PG: Optimizing sociotechnical interventions for healthcare access using community sensing
SCC-PG:利用社区感知优化医疗保健获取的社会技术干预措施
  • 批准号:
    2334724
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
DMREF: Optimizing Problem formulation for prinTable refractory alloys via Integrated MAterials and processing co-design (OPTIMA)
DMREF:通过集成材料和加工协同设计 (OPTIMA) 优化可打印耐火合金的问题表述
  • 批准号:
    2323611
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了