Theorems of Linear Elasticity extended to Gradient Elasticity and their Applications
线性弹性定理推广到梯度弹性及其应用
基本信息
- 批准号:426324717
- 负责人:
- 金额:--
- 依托单位:
- 依托单位国家:德国
- 项目类别:Research Grants
- 财政年份:2020
- 资助国家:德国
- 起止时间:2019-12-31 至 2023-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The classical theory of elasticity is an integral part of the daily routine of engineers. It was placed on a firm theoretical foundation between the beginning of the 19th century and the mid-20th century. Its development can be considered complete.Unfortunately, its scope is limited: It is size insensitive, it contains singularities in the stresses and displacements when discontinuities appear in the boundary data, and can not include boundary and surface energies. Thus, it is limited to typical engineering applications. For the description of micro-components or phenomena in the micron- and nanometer range it is only partially suitable.A natural extension of classical elasticity is the strain gradient elasticity, in which higher derivatives of the displacement field appear. It has been shown in numerous papers that the limitations of classical elasticity theory can be overcome with gradient expansion without blurring the usual separation between structure- and material properties, as is the case with alternative nonlocal theories. Unfortunately, it has not yet been possible to develop a complete solid foundation for gradient elasticity as it exists for classical elasticity theory.This is not a purely academic matter. The increasing miniaturization of components and the targeted development of micro-structured materials require us to go beyond the classical theory of elasticity. Furthermore, by removing the singularities of classical elasticity, we are able to apply a number of criteria (e.g. fracture and flow criteria), which are usually formulated in the Cauchy stresses, also in the vicinity of boundary discontinuities. This significantly increases the applicability of the elasticity theory.In the proposed project, the well-established theoretical foundations of classical elasticity are to be expanded to strain gradient elasticity. For this purpose, a generalizing axiomatic theory has been worked out, about 2/3 of which have already been transferred to the gradient theory. We try to complete this transfer, which is the core of the work of the German project partner. The Russian project partner is concerned with specific applications. For example, uniqueness theorems for boundary value problems with pure displacement or pure stress boundary conditions are applied in homogenization. With them, for example, the Eshelby fundamental solution of an elliptical inclusion in an infinite matrix can be extended. Another application are transversely isotropic fiber-reinforced composites, for which both a scale transition and the specific properties of the stiffness tensor are to be investigated. Finally, the de Saint-Venant principle for gradient elasticity will be investigated in beam experiments.
经典弹性理论是工程师日常工作中不可缺少的一部分。它在19世纪初至20世纪中期奠定了坚实的理论基础。它的发展可以被认为是完整的,但不幸的是,它的范围是有限的:它是尺寸不敏感的,当边界数据中出现不连续时,它包含应力和位移中的奇异性,并且不能包括边界和表面能。因此,它仅限于典型的工程应用。对于描述微米和纳米范围内的微观成分或现象,它只是部分适用。经典弹性力学的一个自然延伸是应变梯度弹性,其中出现位移场的高阶导数。许多论文已经表明,经典弹性理论的局限性可以用梯度展开来克服,而不会像其他非局部理论那样模糊结构和材料性质之间的通常分离。不幸的是,梯度弹性理论还不可能像经典弹性理论那样有一个完整的坚实的基础,这不是一个纯粹的学术问题。元件的日益小型化和微结构材料的有针对性的发展要求我们超越经典的弹性理论。此外,通过去除经典弹性力学的奇异性,我们能够应用一些准则(例如断裂和流动准则),这些准则通常在柯西应力中制定,也在边界不连续附近。这显著地增加了弹性理论的适用性。在所提议的项目中,经典弹性的成熟理论基础将被扩展到应变梯度弹性。为此目的,已建立了一个推广的公理化理论,其中约2/3已转移到梯度理论。我们试图完成这一转移,这是德国项目合作伙伴工作的核心。俄罗斯项目合作伙伴关注具体应用。例如,纯位移或纯应力边界条件的边值问题的唯一性定理应用于均匀化。例如,利用它们,可以推广无限矩阵中椭圆夹杂的Eshelby基本解。另一个应用是横观各向同性纤维增强复合材料,其中的尺度转换和刚度张量的具体属性进行了研究。最后,将在梁实验中研究梯度弹性的de Saint-Venant原理。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Professor Dr.-Ing. Holm Altenbach其他文献
Professor Dr.-Ing. Holm Altenbach的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Professor Dr.-Ing. Holm Altenbach', 18)}}的其他基金
Generalized Continua from the Theory to Engineering Applications
从理论到工程应用的广义连续体
- 批准号:
214002286 - 财政年份:2011
- 资助金额:
-- - 项目类别:
Research Grants
Eine Theorie für Platten mit über die Plattendicke veränderlichen Werkstoffeigenschaften
材料特性随板厚变化的板理论
- 批准号:
135393585 - 财政年份:2009
- 资助金额:
-- - 项目类别:
Research Grants
Anwendung unterschiedlicher Kriechschädigungsmodelle auf die Analyse dünnwandiger Bauteile
不同蠕变损伤模型在薄壁构件分析中的应用
- 批准号:
5159724 - 财政年份:1999
- 资助金额:
-- - 项目类别:
Research Grants
Simplified model within coupled linear anisotropic strain gradient elasticity and its applications to the solution of various boundary value problems
耦合线性各向异性应变梯度弹性的简化模型及其在解决各种边值问题中的应用
- 批准号:
525069255 - 财政年份:
- 资助金额:
-- - 项目类别:
Research Grants
Peridynamic Modeling, Identification and Validation of Laminates Responses Beyond Damage Initiation
损伤引发后层压板响应的近场动力学建模、识别和验证
- 批准号:
524910452 - 财政年份:
- 资助金额:
-- - 项目类别:
Research Grants
相似国自然基金
Development of a Linear Stochastic Model for Wind Field Reconstruction from Limited Measurement Data
- 批准号:
- 批准年份:2020
- 资助金额:40 万元
- 项目类别:
相似海外基金
Quantitative stochastic homogenization: periodic representative volume element approximationsin non-linear elasticity
定量随机均质化:非线性弹性中的周期性代表性体积元近似
- 批准号:
405009441 - 财政年份:2018
- 资助金额:
-- - 项目类别:
Research Grants
Linear and non-linear elasticity: Study of exact relations and instabilities
线性和非线性弹性:精确关系和不稳定性的研究
- 批准号:
1412058 - 财政年份:2014
- 资助金额:
-- - 项目类别:
Standard Grant
Systematic study of instabilities in non-linear elasticity and martensitic phase transformations
非线性弹性和马氏体相变不稳定性的系统研究
- 批准号:
0707582 - 财政年份:2007
- 资助金额:
-- - 项目类别:
Standard Grant
A Micro-Local and Fourier-Analytical Approach to Some Non-Linear Problems in Fluid Mechanics and Elasticity
流体力学和弹性中一些非线性问题的微观局部和傅立叶分析方法
- 批准号:
0405803 - 财政年份:2004
- 资助金额:
-- - 项目类别:
Continuing Grant
ELASTICITY OF KINESIN UNDER ROTARY AND LINEAR FORCES
旋转力和线性力下驱动蛋白的弹性
- 批准号:
6374822 - 财政年份:2001
- 资助金额:
-- - 项目类别:
ELASTICITY OF KINESIN UNDER ROTARY AND LINEAR FORCES
旋转力和线性力下驱动蛋白的弹性
- 批准号:
6171791 - 财政年份:2000
- 资助金额:
-- - 项目类别:
ELASTICITY OF KINESIN UNDER ROTARY AND LINEAR FORCES
旋转力和线性力下驱动蛋白的弹性
- 批准号:
2865210 - 财政年份:1999
- 资助金额:
-- - 项目类别:
Research Initiation--The Uniqueness Issue in Non-linear Elasticity Theory
研究启动--非线性弹性理论的唯一性问题
- 批准号:
6931517 - 财政年份:1969
- 资助金额:
-- - 项目类别:
Simplified model within coupled linear anisotropic strain gradient elasticity and its applications to the solution of various boundary value problems
耦合线性各向异性应变梯度弹性的简化模型及其在解决各种边值问题中的应用
- 批准号:
525069255 - 财政年份:
- 资助金额:
-- - 项目类别:
Research Grants