Archimedean and Non-Archimedean Higher Order Stratifications
阿基米德和非阿基米德高阶分层
基本信息
- 批准号:426488848
- 负责人:
- 金额:--
- 依托单位:
- 依托单位国家:德国
- 项目类别:Research Grants
- 财政年份:2019
- 资助国家:德国
- 起止时间:2018-12-31 至 2021-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
A singularity is a point where a geometric object is "not smooth", like the tip of a cone or a fold in a sheet of paper. The goal of singularity theory is to describe what kind of singularities can arise when the geometric object is given by certain kinds of equations. When the equations model a system from the real world (like the weather, population densities, positioning of a robot arm), a singularity typically corresponds to a state with sudden changes and/or unpredictable behavior.When a geometric object is given, one typically would like to classify all its singularities, and also to describe how the singularities are distributed on the object. One mathematical tool for this are "stratifications". There are different kinds of stratifications, which yield classifications of the singularities of different precision. However, even the best known stratifications are not yet good enough for certain intended applications. The goal of this project is to develop more precise stratifications using the following new approach based on logic.To analyze a singularity at a certain point of a geometric object, one considers the geometric object in a tiny neighborhood of that point: the smaller the neighborhood, the better, since on larger neighborhoods, one sees more things that are not relevant for the singularity itself. Usually, considering an "infinitely small" neighbourhood of the point would not make sense, since it would only consist of the point itself. However, using methods from logic, one can introduce infinitely small numbers, so that afterwards, also infinitely small neighbourhoods become meaningful; in particular, they become very handy to describe singularities.The most precise classical notions of stratifications (which do not use infinitely small neighbourhoods) are extremely complicated and technical to define. In the last years, by using the approach via logic, I developed several new notions of stratifications which are similar in precision as the best classical ones, but much simpler to define and much easier to work with. The plan for this project is to further improve those new stratifications.
奇点是几何对象“不光滑”的点,例如圆锥体的尖端或一张纸的折叠处。奇点理论的目标是描述当几何对象由某些类型的方程给定时会出现什么样的奇点。当方程对现实世界的系统(如天气、人口密度、机器人手臂的位置)进行建模时,奇点通常对应于突然变化和/或不可预测行为的状态。当给定一个几何对象时,人们通常希望对其所有奇点进行分类,并描述奇点在对象上的分布方式。一种数学工具是“分层”。存在不同种类的分层,从而产生不同精度的奇点的分类。然而,即使是最知名的分层对于某些预期应用来说还不够好。该项目的目标是使用以下基于逻辑的新方法开发更精确的分层。为了分析几何对象某一点的奇点,我们需要考虑该点的微小邻域中的几何对象:邻域越小越好,因为在更大的邻域中,人们会看到更多与奇点本身无关的事物。通常,考虑点的“无限小”邻域是没有意义的,因为它仅由点本身组成。然而,使用逻辑方法,我们可以引入无限小的数字,这样之后,无限小的邻域也变得有意义;特别是,它们对于描述奇点变得非常方便。最精确的经典分层概念(不使用无限小的邻域)的定义极其复杂且技术性强。在过去的几年里,通过使用逻辑方法,我开发了几种新的分层概念,这些概念在精度上与最好的经典概念相似,但定义更简单,也更容易使用。该项目的计划是进一步改善这些新的分层。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Professor Dr. Immanuel Halupczok其他文献
Professor Dr. Immanuel Halupczok的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似国自然基金
Non-CG DNA甲基化平衡大豆产量和SMV抗性的分子机制
- 批准号:32301796
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
long non-coding RNA(lncRNA)-activatedby TGF-β(lncRNA-ATB)通过成纤维细胞影响糖尿病创面愈合的机制研究
- 批准号:LQ23H150003
- 批准年份:2023
- 资助金额:0.0 万元
- 项目类别:省市级项目
染色体不稳定性调控肺癌non-shedding状态及其生物学意义探索研究
- 批准号:82303936
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
变分法在双临界Hénon方程和障碍系统中的应用
- 批准号:12301258
- 批准年份:2023
- 资助金额:30.00 万元
- 项目类别:青年科学基金项目
BTK抑制剂下调IL-17分泌增强CD20mb对Non-GCB型弥漫大B细胞淋巴瘤敏感性
- 批准号:n/a
- 批准年份:2022
- 资助金额:10.0 万元
- 项目类别:省市级项目
Non-TAL效应子NUDX4通过Nudix水解酶活性调控水稻白叶枯病菌致病性的分子机制
- 批准号:
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
一种新non-Gal抗原CYP3A29的鉴定及其在猪-猕猴异种肾移植体液排斥反应中的作用
- 批准号:
- 批准年份:2022
- 资助金额:33 万元
- 项目类别:地区科学基金项目
非经典BAF(non-canonical BAF,ncBAF)复合物在小鼠胚胎干细胞中功能及其分子机理的研究
- 批准号:32170797
- 批准年份:2021
- 资助金额:58 万元
- 项目类别:面上项目
Non-Oberbeck-Boussinesq效应下两相自然对流问题的建模及高效算法研究
- 批准号:
- 批准年份:2021
- 资助金额:30 万元
- 项目类别:青年科学基金项目
植物胚乳发育过程中non-CG甲基化调控的分子机制探究
- 批准号:LQ21C060001
- 批准年份:2020
- 资助金额:0.0 万元
- 项目类别:省市级项目
相似海外基金
Discourses of non-participation in Higher Education and the reproduction of class inequalities
不参加高等教育的话语与阶级不平等的再现
- 批准号:
2863516 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Studentship
The Research about the Non University Higher Education in Austria
奥地利非大学高等教育研究
- 批准号:
22K02686 - 财政年份:2022
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Scientific Research (C)
Study of Japan campuses of Chinese prestigious universities: Investigating its educational values and alternative ways to internationalization of higher education for non-English speaking countries
中国名牌大学日本校区研究:探究其教育价值及非英语国家高等教育国际化的替代途径
- 批准号:
22K13731 - 财政年份:2022
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Early-Career Scientists
Construction of higher-order dysfunction diagnosis system after anterior communicating artery aneurysm by non-contrast perfusion MRI
前交通动脉瘤术后MRI平扫高阶功能障碍诊断系统的构建
- 批准号:
21K07587 - 财政年份:2021
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Scientific Research (C)
Development of a noninvasive technique to functionally block neural projections in non-human primates and understanding of a regulatory mechanism of the higher brain functions
开发一种非侵入性技术来功能性阻断非人类灵长类动物的神经投射,并了解高级大脑功能的调节机制
- 批准号:
20H03548 - 财政年份:2020
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Scientific Research (B)
Interferometric, acousto-optic modulated diffuse correlation spectroscopy @ 1064 nm (AOM-iDCS) toward higher sensitivity, non-invasive measurement of cerebral blood flow
干涉、声光调制漫相关光谱 @ 1064 nm (AOM-iDCS) 实现更高灵敏度、非侵入性脑血流测量
- 批准号:
10065091 - 财政年份:2020
- 资助金额:
-- - 项目类别:
Interferometric, acousto-optic modulated diffuse correlation spectroscopy @ 1064 nm (AOM-iDCS) toward higher sensitivity, non-invasive measurement of cerebral blood flow
干涉、声光调制漫相关光谱 @ 1064 nm (AOM-iDCS) 实现更高灵敏度、非侵入性脑血流测量
- 批准号:
10251073 - 财政年份:2020
- 资助金额:
-- - 项目类别:
Singular Integral Operators for Higher-Order Systems in Non-Smooth Domains
非光滑域高阶系统的奇异积分算子
- 批准号:
1900938 - 财政年份:2019
- 资助金额:
-- - 项目类别:
Standard Grant
Research on holistic evaluation focusing on non-academic skills in entrance examinations for higher school under the old systems.
旧体制下高考非学业技能整体评价研究
- 批准号:
19K02854 - 财政年份:2019
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Scientific Research (C)
Comparative Study on Transnational Higher Education in Non English Speaking Context
非英语语境下跨国高等教育比较研究
- 批准号:
18K02389 - 财政年份:2018
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Scientific Research (C)