Homogenisation and elliptic approximation of random free-discontinuity functionals

随机自由间断函数的齐次化和椭圆近似

基本信息

项目摘要

Natural and engineered composite materials usually posses an incredibly complex microstructure. To reduce this complexity, in materials modelling reasonable idealizations have to be considered. Random composite materials represent a relevant class of such idealizations. Motivated by primary questions arising in the variational theory of (static) fracture, the main goal of this research project is to study the large-scale behavior of random elastic composites which can undergo fracture.From a mathematical standpoint this will amount to the development of a stochastic homogenization theory for energy-functionals of free-discontinuity type.The study of the limit behavior of random free-discontinuity functionals is very much at its infancy. Indeed, to date the first general homogenization result for random free-discontinuity functionals defined in SBV was established only in 2017 in [CDMSZ17-2]. This proposal starts from this very recent result and proposes to develop a comprehensive qualitative theory of stochastic homogenization for free-discontinuity functionals. This will be done by combining two complementary approaches: a "direct" approach and an "indirect" approximation-approach. The direct approach will consist in extending the SBV-theory in [CDMSZ17-2] both to the BV-setting and to the setting of functionals with degenerate coefficients, the latter being relevant, e.g., in the study of fracture in perforated materials and in high-contrast brittle composites. The approximation-approach, instead, will consist in proposing suitable elliptic phase-field approximations of random free-discontinuity functionals which can provide regular-approximations of the homogenized coefficients, thus also setting the stage for the development of a quantitative homogenization theory.
天然和工程复合材料通常具有极其复杂的微观结构。为了降低这种复杂性,在材料建模中必须考虑合理的理想化。随机复合材料代表了这类理想化的一个相关类别。受(静态)断裂变分理论中出现的主要问题的启发,本研究计划的主要目标是研究随机弹性复合材料的大尺度断裂行为。从数学观点来看,这将相当于发展一种自由间断型能量泛函的随机均匀化理论。随机自由间断型能量泛函的极限行为的研究,不连续泛函还处于起步阶段。事实上,到目前为止,SBV中定义的随机自由不连续泛函的第一个通用均匀化结果仅在2017年在[CDMSZ 17 -2]中建立。这个建议从这个最近的结果,并建议发展一个全面的定性理论的随机均匀化的自由不连续泛函。这将通过结合两种互补的方法来实现:“直接”方法和“间接”近似方法。直接的方法是将[CDMSZ 17 -2]中的SBV理论扩展到BV设置和具有退化系数的泛函的设置,后者是相关的,例如,在穿孔材料和高对比度脆性复合材料的断裂研究中。近似的方法,而不是,将包括在提出合适的椭圆相场近似的随机自由不连续泛函,可以提供定期近似的均匀化系数,从而也设置了阶段的发展定量均匀化理论。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Professorin Dr. Caterina Ida Zeppieri其他文献

Professorin Dr. Caterina Ida Zeppieri的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

相似海外基金

CAREER: Elliptic cohomology and quantum field theory
职业:椭圆上同调和量子场论
  • 批准号:
    2340239
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
Unique continuation and the regularity of elliptic PDEs and generalized minimal submanifolds
椭圆偏微分方程和广义最小子流形的唯一延拓和正则性
  • 批准号:
    2350351
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Euler Systems, Iwasawa Theory, and the Arithmetic of Elliptic Curves
欧拉系统、岩泽理论和椭圆曲线算术
  • 批准号:
    2401321
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
Regularity Problems in Free Boundaries and Degenerate Elliptic Partial Differential Equations
自由边界和简并椭圆偏微分方程中的正则问题
  • 批准号:
    2349794
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
CAREER: Accelerating Algorithms for Computing Isogenies and Endomorphisms of Supersingular Elliptic Curves
职业:加速计算超奇异椭圆曲线同构和自同态的算法
  • 批准号:
    2340564
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
Parabolic and elliptic boundary value and free boundary problems
抛物线和椭圆边值以及自由边界问题
  • 批准号:
    2349846
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Geometric Representations of the Elliptic Quantum Toroidal Algebras
椭圆量子环形代数的几何表示
  • 批准号:
    23K03029
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Nonlinear Elliptic Equations and Systems, and Applications
非线性椭圆方程和系统以及应用
  • 批准号:
    2247410
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
CAREER: Elliptic Dichroism Microscopy for Cellular Stereochemistry Analysis
职业:用于细胞立体化学分析的椭圆二色显微镜
  • 批准号:
    2236885
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
CAREER: Elliptic Dichroism Microscopy for Cellular Stereochemistry Analysis
职业:用于细胞立体化学分析的椭圆二色显微镜
  • 批准号:
    2401151
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了