Homogenisation and elliptic approximation of random free-discontinuity functionals
随机自由间断函数的齐次化和椭圆近似
基本信息
- 批准号:426599264
- 负责人:
- 金额:--
- 依托单位:
- 依托单位国家:德国
- 项目类别:Research Grants
- 财政年份:2019
- 资助国家:德国
- 起止时间:2018-12-31 至 2021-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Natural and engineered composite materials usually posses an incredibly complex microstructure. To reduce this complexity, in materials modelling reasonable idealizations have to be considered. Random composite materials represent a relevant class of such idealizations. Motivated by primary questions arising in the variational theory of (static) fracture, the main goal of this research project is to study the large-scale behavior of random elastic composites which can undergo fracture.From a mathematical standpoint this will amount to the development of a stochastic homogenization theory for energy-functionals of free-discontinuity type.The study of the limit behavior of random free-discontinuity functionals is very much at its infancy. Indeed, to date the first general homogenization result for random free-discontinuity functionals defined in SBV was established only in 2017 in [CDMSZ17-2]. This proposal starts from this very recent result and proposes to develop a comprehensive qualitative theory of stochastic homogenization for free-discontinuity functionals. This will be done by combining two complementary approaches: a "direct" approach and an "indirect" approximation-approach. The direct approach will consist in extending the SBV-theory in [CDMSZ17-2] both to the BV-setting and to the setting of functionals with degenerate coefficients, the latter being relevant, e.g., in the study of fracture in perforated materials and in high-contrast brittle composites. The approximation-approach, instead, will consist in proposing suitable elliptic phase-field approximations of random free-discontinuity functionals which can provide regular-approximations of the homogenized coefficients, thus also setting the stage for the development of a quantitative homogenization theory.
天然和工程复合材料通常具有极其复杂的微观结构。为了降低这种复杂性,在材料建模中必须考虑合理的理想化。随机复合材料代表了这类理想化的一个相关类别。受(静态)断裂变分理论中出现的主要问题的启发,本研究计划的主要目标是研究随机弹性复合材料的大尺度断裂行为。从数学观点来看,这将相当于发展一种自由间断型能量泛函的随机均匀化理论。随机自由间断型能量泛函的极限行为的研究,不连续泛函还处于起步阶段。事实上,到目前为止,SBV中定义的随机自由不连续泛函的第一个通用均匀化结果仅在2017年在[CDMSZ 17 -2]中建立。这个建议从这个最近的结果,并建议发展一个全面的定性理论的随机均匀化的自由不连续泛函。这将通过结合两种互补的方法来实现:“直接”方法和“间接”近似方法。直接的方法是将[CDMSZ 17 -2]中的SBV理论扩展到BV设置和具有退化系数的泛函的设置,后者是相关的,例如,在穿孔材料和高对比度脆性复合材料的断裂研究中。近似的方法,而不是,将包括在提出合适的椭圆相场近似的随机自由不连续泛函,可以提供定期近似的均匀化系数,从而也设置了阶段的发展定量均匀化理论。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Professorin Dr. Caterina Ida Zeppieri其他文献
Professorin Dr. Caterina Ida Zeppieri的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似海外基金
CAREER: Elliptic cohomology and quantum field theory
职业:椭圆上同调和量子场论
- 批准号:
2340239 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Continuing Grant
Unique continuation and the regularity of elliptic PDEs and generalized minimal submanifolds
椭圆偏微分方程和广义最小子流形的唯一延拓和正则性
- 批准号:
2350351 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Standard Grant
Euler Systems, Iwasawa Theory, and the Arithmetic of Elliptic Curves
欧拉系统、岩泽理论和椭圆曲线算术
- 批准号:
2401321 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Continuing Grant
Regularity Problems in Free Boundaries and Degenerate Elliptic Partial Differential Equations
自由边界和简并椭圆偏微分方程中的正则问题
- 批准号:
2349794 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Standard Grant
CAREER: Accelerating Algorithms for Computing Isogenies and Endomorphisms of Supersingular Elliptic Curves
职业:加速计算超奇异椭圆曲线同构和自同态的算法
- 批准号:
2340564 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Continuing Grant
Parabolic and elliptic boundary value and free boundary problems
抛物线和椭圆边值以及自由边界问题
- 批准号:
2349846 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Standard Grant
Geometric Representations of the Elliptic Quantum Toroidal Algebras
椭圆量子环形代数的几何表示
- 批准号:
23K03029 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Scientific Research (C)
Nonlinear Elliptic Equations and Systems, and Applications
非线性椭圆方程和系统以及应用
- 批准号:
2247410 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Standard Grant
CAREER: Elliptic Dichroism Microscopy for Cellular Stereochemistry Analysis
职业:用于细胞立体化学分析的椭圆二色显微镜
- 批准号:
2236885 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Continuing Grant
CAREER: Elliptic Dichroism Microscopy for Cellular Stereochemistry Analysis
职业:用于细胞立体化学分析的椭圆二色显微镜
- 批准号:
2401151 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Continuing Grant