Explicit renormalization and power counting in the few-nucleon chiral effective field theory with a cutoff

带截止的少核子手性有效场理论中的显式重整化和功率计数

基本信息

项目摘要

The main goal of this project is to formulate and construct a scheme based on the principles of chiral effective field theory and using the chiral effective Lagrangian that can be applied in the few-nucleon sector with the main requirements being an explicit renormalization of the parameters of the Lagrangian and explicit power counting for observables, and preserving the symmetries of the underlying theory. First, the two-nucleon system is studied. The leading-order potential-one-pion exchange regulated by a cutoff as well as some contact terms are treated non-perturbatively by solving the Lippmann-Schwinger equation iterating the leading-order potential. The difference between the full contribution of the multi-pion exchange together with the unregulated contact interactions and the iterated leading-order potential is regarded as a perturbation.All other higher order loop diagrams and contact-term contributions are also taken into account perturbatively. The perturbative restoration of the original interaction results ina much weaker dependence of observables on the form and the size of the regulator as compared to conventional approaches.We plan to rigorously prove the possibility of absorbing all power-counting violating contributions by a renormalization of the parameters of the effective Lagrangianby analyzing the structure of the relevant integrals in momentum space and check this numerically. We will first consider the next-to-leading order nucleon-nucleon amplitude and then extend the analysis to the next-to-next-to-leading and next-to-next-to-next-to-leading orders. After that, it will be possible to generalize the method to the interaction of the two-nucleon system with electroweak currents. The possibility to extend the applicability domain of the proposed method to the cutoffs significantly larger then the hard scale will be investigated in order to find a matching between the ``large''- and ``small''-cutoff schemes. We will also check whether it is possible to determine the explicit pion-mass dependence of the observableswithin the considered approach. As for the practical applications, deuteron form factors and deuteron photodisintegration will be considered.
这个项目的主要目标是根据手征有效场论的原理和使用手征有效拉格朗日来制定和构造一个方案,该方案可以应用于少数核子部门,主要要求是拉格朗日参数的显式重整化和对可观测到的显式功率计数,并保持基本理论的对称性。首先,研究了双核子系统。通过求解迭代前导阶势的Lippmann-Schwinger方程,非微扰地处理了受截断调节的前导级势-1-π交换以及一些接触项。多π交换的全部贡献与无规则的接触相互作用和迭代的领导阶势之差被视为微扰,所有其他高阶回路图和接触项的贡献也被微扰考虑。与传统方法相比,对原始相互作用的微扰恢复使得能观量对调节器的形式和大小的依赖性要弱得多。我们计划通过分析动量空间中相关积分的结构,严格证明通过重整化有效拉格朗日参数来吸收所有违反功率计算的贡献的可能性,并进行数值验证。我们将首先考虑次前级核子-核子振幅,然后将分析扩展到次前级和次前级。然后,将该方法推广到两核子系统与弱电流的相互作用。将研究将拟议方法的适用范围扩大到远大于硬规模的适用范围的可能性,以便找到“大”--和“小”-截止范围方案之间的匹配。我们还将检查是否有可能在所考虑的方法内确定可见粒子与质量的显式依赖关系。在实际应用中,我们将考虑重离子形状因子和重离子光解。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Dr. Ashot Gasparyan其他文献

Dr. Ashot Gasparyan的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

相似国自然基金

各向同性淬致无序环境中层列型液晶A-C相变
  • 批准号:
    11004241
  • 批准年份:
    2010
  • 资助金额:
    19.0 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Coarse-graining, Renormalization, and Fractal Homogenization
粗粒度、重整化和分形均匀化
  • 批准号:
    2350340
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
Development of tensor network renormalization group method for high dimensions and new understanding of quantum liquid phases
高维张量网络重整化群方法的发展及对量子液相的新认识
  • 批准号:
    23H01092
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Development of tensor renormalization group for lattice field theories rich in internal degrees of freedom
丰富内部自由度晶格场论张量重整化群的发展
  • 批准号:
    23K13096
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Conference: Renormalization and Visualization for packings, billiards and surfaces
会议:包装、台球和表面的重整化和可视化
  • 批准号:
    2333366
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
ERI: Representations of Complex Engineering Systems via Technology Recursion and Renormalization Group
ERI:通过技术递归和重整化群表示复杂工程系统
  • 批准号:
    2301627
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
The algebraic analysis of evanescent operators in effective field theory and their asymptotic behavior
有效场论中倏逝算子的代数分析及其渐近行为
  • 批准号:
    22KJ1072
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
Complex dynamics: group actions, Migdal-Kadanoff renormalization, and ergodic theory
复杂动力学:群作用、Migdal-Kadanoff 重整化和遍历理论
  • 批准号:
    2154414
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Renormalization and Quasi-Periodicity
重整化和准周期性
  • 批准号:
    RGPIN-2018-04510
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
    Discovery Grants Program - Individual
CAREER: Renormalization and higher rank parabolic actions
职业生涯:重整化和更高阶的抛物线作用
  • 批准号:
    2143133
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
Homotopy Algebraic Approach to the Exact Renormalization Group Analysis in Quantum Field Theory
量子场论中精确重正化群分析的同伦代数方法
  • 批准号:
    22K14038
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了