熱浴のリーマン幾何類似とハルナック不等式

热浴的黎曼几何类比和 Harnack 不等式

基本信息

  • 批准号:
    17654014
  • 负责人:
  • 金额:
    $ 1.6万
  • 依托单位:
  • 依托单位国家:
    日本
  • 项目类别:
    Grant-in-Aid for Exploratory Research
  • 财政年份:
    2005
  • 资助国家:
    日本
  • 起止时间:
    2005 至 2007
  • 项目状态:
    已结题

项目摘要

Ricci flowに有限時間で現れる時空の特異点の時空でのrescale極限はRicci flowの古代解(存在時間が過去に無限に伸びた解)であり,それは特異点情報をすべて持っている.Ricci flowは弱放物型の発展方程式だから,過去に無限に伸びた解の存在は解析的には奇跡である.幾何的にはきわめて特殊な条件下でないとこのような解は存在することができない.Einstein計量の存在から幾何的な情報を導出するための方法として古代解を使うというアイディアはHami1tonがRicci flowによる幾何化予想の研究で最初に導入し,始めて実装に成功したのはPerelmanである.Hami1ton/Perelmanの思想を正の四元数Kaehler空間のtwistor空間の自然な崩壊をRicci flowで実現して適用したのが本研究である.Twistor空間のEinstein計量(少なくとも2つ)のうちKaehler-Einstein計量をとりあげ,KE計量を中心とするRicci flow不安定セルの構成を試みた.正の四元数Kaehler空間の正規直交枠束のholonomy簡約上の動標構と接続形式のSp(1)部分を組み合わせてtwistor空間上のKE計量を含むRiemann計量の2パラメタ族で次の3つの性質を持つものを構成した.(1)この族に初期計量を持つRicci flow解はこの族に属する.(2)この族に初期計量を持つRicci flow解はすべて古代解である.(3)この族に初期計量とするRicci flow解は有限時間で崩壊し,それはtwistor束の2つの自然な崩壊を実現する.これによりtwistor空間の自然な崩壊とKE計量がRicci flow解でつながっていることが分かった.2つの崩壊のうち底空間が速く収縮するものを選んでBanso/ShiのRicci flow解の勾配評価を適用することにより,正の四元数Kaehler空間の曲率テンソルが平行になることが示される.これはLeBrun-Salamon予想への肯定的解決を与える.
Ricci flow is a finite time evolution equation for a unique point in time and space, and a finite time evolution equation for a unique point in time and space.Ricci flow is a finite time evolution equation for a unique point in time and space, and a finite time evolution equation for a unique point in time. Geometric solutions exist under special conditions.Einstein metrology exists. Geometric information is derived. Methods of geometric solutions are introduced initially. Hami1ton/Perelman's idea of positive quaternion Kaehler space and twistor space and natural collapse Ricci flow are applied to this study. Einstein metric of twistor space and Kaehler-Einstein metric of Twistor space The measurement center is unstable. The normal orthogonal bundle of positive quaternion Kaehler spaces is holonomically reduced, the dynamic label structure and the joint form of Sp(1) are partially combined, and the KE metric on twister spaces contains Riemann metric, the 2-degree family, the 3-degree property, and the structure. (1)The initial measurement of this family is based on Ricci flow. (2)The initial measurement of this family is based on Ricci flow solution. (3)The Ricci flow solution of this family is a finite time collapse, and the natural collapse of the twister bundle is realized. The natural collapse of twister space and KE measurement of Ricci flow solution are discussed in detail below. 2. The collapse of bottom space and speed of convergence are discussed in detail below. Banso/Shi Ricci flow solution and matching evaluation are discussed in detail below.これはLeBrun-Salamon予想への肯定的解决を与える.

项目成果

期刊论文数量(11)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
擬代数的極小曲面のガウス写像
伪代数极小曲面的高斯图
Ricci flow unstable cell centered at a K\"ahler-Einstein metric on the twistor space of positive quaternion K\"ahler manifolds of dimension ≧ 8
Ricci 流不稳定单元以维数 ≧ 8 的正四元数 K"ahler 流形的扭量空间上的 K"ahler-Einstein 度量为中心
対数Sobolev不等式、エントロピー公式、Riemann幾何的熱浴-PerelmanによるRicci flowへのアプローチー
对数索博列夫不等式、熵公式、黎曼几何热浴 - 佩雷尔曼的里奇流方法 -
  • DOI:
  • 发表时间:
    2008
  • 期刊:
  • 影响因子:
    0
  • 作者:
    藤原 宏志;今井 仁司;竹内 敏己;磯 祐介;小林亮一
  • 通讯作者:
    小林亮一
arXiv:math/0801.2605 [math.DG], arXiv:math/0511643 [math.DG]
arXiv:math/0801.2605 [math.DG], arXiv:math/0511643 [math.DG]
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
arXiv:math/0507489 [math.DG], arXiv:math/0805.1956 [math.DG]
arXiv:math/0507489 [math.DG], arXiv:math/0805.1956 [math.DG]
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

小林 亮一其他文献

Eta-product η(7τ)^7/η(τ)
eta-积 η(7τ)^7/η(τ)
  • DOI:
  • 发表时间:
    2006
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Alexandru Dimca;Morihiko Saito;小林 亮一;齋藤恭司
  • 通讯作者:
    齋藤恭司
リッチ・フローと統計物理 第1部
富流和统计物理第 1 部分
  • DOI:
  • 发表时间:
    2005
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Mikio Furuta;Yukio Kametani;Hirofumi Matsue;Norihiko Minami;Norihiko Minami;Yoshiyuki Kuramoto;K. Nagatomo and Akihiro Tsuchiya;古田幹雄;小林 亮一;小林 亮一
  • 通讯作者:
    小林 亮一
PerelmanによるRicciowへのアプローチ-対数Sobolev不等式, エントロピー公式, Riemann幾何的熱浴-
佩雷尔曼的里乔夫方法 - 对数索博列夫不等式、熵公式、黎曼几何热浴 -
  • DOI:
  • 发表时间:
    2008
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Y. Kawamaki;R. Miyaoka;and Ryoichi Kobayashi;小林 亮一
  • 通讯作者:
    小林 亮一
Geometry of plane curves via taylor expansions
通过泰勒展开的平面曲线几何
  • DOI:
  • 发表时间:
    2008
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Mikio Furuta;Yukio Kametani;Hirofumi Matsue;Norihiko Minami;Norihiko Minami;Yoshiyuki Kuramoto;K. Nagatomo and Akihiro Tsuchiya;古田幹雄;小林 亮一;小林 亮一;小林 亮一;小林 亮一;K. Saito;M. Oka
  • 通讯作者:
    M. Oka
Toward Nevanlinna-Galois Theory of algebraic mnlmal surfaces,
迈向代数数学曲面的 Nevanlinna-Galois 理论,
  • DOI:
  • 发表时间:
    2005
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Mikio;Furuta;小林 亮一;小林 亮一;小林 亮一
  • 通讯作者:
    小林 亮一

小林 亮一的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('小林 亮一', 18)}}的其他基金

対称空間の双対性に基づくケーラー・アインシュタイン計量の構成とその漸近解析
基于对称空间对偶性的卡勒-爱因斯坦度量的构造及其渐近分析
  • 批准号:
    20654008
  • 财政年份:
    2008
  • 资助金额:
    $ 1.6万
  • 项目类别:
    Grant-in-Aid for Challenging Exploratory Research
端的ケーラー計量への力学系的アプローチ
简单科勒度量的动力系统方法
  • 批准号:
    14654012
  • 财政年份:
    2002
  • 资助金额:
    $ 1.6万
  • 项目类别:
    Grant-in-Aid for Exploratory Research
リッチフラットケーラー計量の大域解析学とカスプ特異点
Ricci-flat Köhler 度量和尖点奇点的全局分析
  • 批准号:
    11874012
  • 财政年份:
    1999
  • 资助金额:
    $ 1.6万
  • 项目类别:
    Grant-in-Aid for Exploratory Research
微分式系と代数多様体の双曲性
微分方程组和代数簇的双曲性
  • 批准号:
    08211221
  • 财政年份:
    1996
  • 资助金额:
    $ 1.6万
  • 项目类别:
    Grant-in-Aid for Scientific Research on Priority Areas
ケーラーアインシュタイン計量の特異摂動の研究及び代数幾何学の諸問題への応用
卡勒-爱因斯坦度量的奇异扰动研究及其在代数几何各种问题中的应用
  • 批准号:
    02740015
  • 财政年份:
    1990
  • 资助金额:
    $ 1.6万
  • 项目类别:
    Grant-in-Aid for Encouragement of Young Scientists (A)
ケーラーアインシュタイン計量の特異摂動の研究および代数幾何学の諸問題への応用
卡勒-爱因斯坦度量的奇异扰动研究及其在代数几何中各种问题的应用
  • 批准号:
    01740016
  • 财政年份:
    1989
  • 资助金额:
    $ 1.6万
  • 项目类别:
    Grant-in-Aid for Encouragement of Young Scientists (A)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了