Prediction of treatment response and outcome in locally advanced rectal cancer using radiomics and deep learning: an example case to demonstrate a general purpose deep-learning-based processing pipeline for image classification.

使用放射组学和深度学习预测局部晚期直肠癌的治疗反应和结果:展示用于图像分类的通用基于深度学习的处理流程的示例。

基本信息

项目摘要

Over the last decade, rectal cancer has become the number 3 most lethal disease in Europe with a 5-year survival rate of only 68% in Germany. Incidence rates are still increasing and remain above 60%. Even though diagnostic and treatment opportunities have improved in recent years, rectal cancer remains a heterogeneous disease in terms of treatment response and outcome.Thus far, only clinical and magnetic resonance imaging (MRI) based criteria are used for guiding treatment decisions, once the diagnosis has been confirmed. Although MRI has evolved to become the standard diagnostic approach in the local staging of rectal cancer, it does not provide information on intratumor heterogeneity or molecular subtypes. Consequently, novel imaging biomarkers are urgently needed in order to better characterize rectal cancer subtypes, aiming at an improved prediction of treatment response and patient outcome.Texture analysis, radiomics and deep learning strategies are increasingly used to address these challenges and to improve patient care. However, patient cohorts in many radiomics studies were relatively small, studies often lacked a validation cohort and imaging data were obtained within one single institution or different centers with similar MRI scanners, thus not allowing for assessing the generalizability of the trained models. Modern radiomics techniques therefore are increasingly shifted towards recent developments in deep learning.The purpose of this study is to develop a radiomics- and deep learning-based imaging signature of rectal cancer, which is able to decode different tumor phenotypes and to non-invasively assess / predict therapeutic response in correlation to histopathology as well as genomics / clinomics. This should lead to a comprehensive characterization of tumor heterogeneity and tumor biology by imaging criteria, which will then allow for individually tailored treatment strategies in the future. The entire framework will be developed based on available open source methodology and will be made available for future use and research, thus enabling future translation into routine clinical practice.Available methodology from the field of radiomics, artificial intelligence, and computer vision will be applied on a prospectively acquired, well-structured multi-center dataset from the CAO-ARO-AIO-12 study, which is already available and accessible for the purpose of the present study. This dataset includes radiation-planning CT data, pre- and post-treatment multiparametric MRI data, histopathological information as well as clinical and genomic data. A team of four experienced PIs from the fields of oncologic imaging, radiomics, MRI physics, radiation therapy, and informatics will work as an interdisciplinary team and share their knowledge-gain with other members of the priority program consortium in an open-source fashion.
在过去的十年中,直肠癌已成为欧洲第三大致命疾病,在德国的5年生存率仅为68%。发病率仍在上升,保持在60%以上。尽管近年来诊断和治疗机会有所改善,但直肠癌在治疗反应和结果方面仍然是一种异质性疾病。到目前为止,只有临床和磁共振成像(MRI)为基础的标准用于指导治疗决策,一旦诊断得到证实。虽然MRI已经发展成为直肠癌局部分期的标准诊断方法,但它不能提供肿瘤内异质性或分子亚型的信息。因此,迫切需要新的成像生物标志物来更好地表征直肠癌亚型,旨在改善治疗反应和患者结局的预测。纹理分析,放射组学和深度学习策略越来越多地用于解决这些挑战并改善患者护理。然而,许多放射组学研究中的患者队列相对较小,研究通常缺乏验证队列,并且成像数据是在一个单一机构或具有类似MRI扫描仪的不同中心内获得的,因此无法评估训练模型的普遍性。因此,现代放射组学技术越来越多地转向深度学习的最新发展。本研究的目的是开发基于放射组学和深度学习的直肠癌成像特征,该特征能够解码不同的肿瘤表型,并非侵入性地评估/预测与组织病理学以及基因组学/临床组学相关的治疗反应。这将导致通过成像标准对肿瘤异质性和肿瘤生物学进行全面表征,从而允许未来个性化的治疗策略。整个框架将基于可用的开源方法开发,并将用于未来的使用和研究,从而使未来能够转化为常规临床实践。放射组学,人工智能和计算机视觉领域的可用方法将应用于CAO-ARO-AIO-12研究中前瞻性获取的结构良好的多中心数据集,这份文件为本研究报告的目的已经可以获得。该数据集包括放射计划CT数据、治疗前和治疗后多参数MRI数据、组织病理学信息以及临床和基因组数据。来自肿瘤成像,放射组学,MRI物理学,放射治疗和信息学领域的四名经验丰富的PI团队将作为一个跨学科团队工作,并以开源方式与优先计划联盟的其他成员分享他们的知识。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Professorin Dr. Ulrike I. Attenberger其他文献

Professorin Dr. Ulrike I. Attenberger的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Professorin Dr. Ulrike I. Attenberger', 18)}}的其他基金

Artificial Intelligence in Radiology – A Workshop for Early Career Investigators
放射学中的人工智能 – 早期职业研究人员研讨会
  • 批准号:
    465228590
  • 财政年份:
  • 资助金额:
    --
  • 项目类别:
    Workshops for Early Career Investigators
Capturing Tumor Heterogeneity in Hepatocellular Carcinoma- A Radiomics Approach Systematically Tested in Transgenic Mice
捕捉肝细胞癌中的肿瘤异质性——在转基因小鼠中进行系统测试的放射组学方法
  • 批准号:
    410981386
  • 财政年份:
  • 资助金额:
    --
  • 项目类别:
    Research Grants

相似国自然基金

噬菌体靶向肠道粪肠球菌提高帕金森病左旋多巴疗效的机制研究
  • 批准号:
    82371251
  • 批准年份:
    2023
  • 资助金额:
    49.00 万元
  • 项目类别:
    面上项目
基于MFSD2A调控血迷路屏障跨细胞囊泡转运机制的噪声性听力损失防治研究
  • 批准号:
    82371144
  • 批准年份:
    2023
  • 资助金额:
    49.00 万元
  • 项目类别:
    面上项目
靶向PARylation介导的DNA损伤修复途径在恶性肿瘤治疗中的作用与分子机制研究
  • 批准号:
    82373145
  • 批准年份:
    2023
  • 资助金额:
    49.00 万元
  • 项目类别:
    面上项目
基于密度泛函理论金原子簇放射性药物设计、制备及其在肺癌诊疗中的应用研究
  • 批准号:
    82371997
  • 批准年份:
    2023
  • 资助金额:
    48.00 万元
  • 项目类别:
    面上项目
基于仿生矿化法构建氢离子捕获的炎症调节性水凝胶微球在卒中治疗中的研究
  • 批准号:
    82372120
  • 批准年份:
    2023
  • 资助金额:
    49.00 万元
  • 项目类别:
    面上项目
MICA基因及其抗体在肾移植排斥反应中的作用机制与干预策略研究
  • 批准号:
    30872530
  • 批准年份:
    2008
  • 资助金额:
    33.0 万元
  • 项目类别:
    面上项目

相似海外基金

QuBIE: Quantitative Biomarker Identification for Non-Endoscopic Prediction and Monitoring of Treatment Response in Eosinophilic Oesophagitis
QuBIE:用于非内镜预测和监测嗜酸性食管炎治疗反应的定量生物标志物鉴定
  • 批准号:
    10083253
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Collaborative R&D
Optimizing the implementation of personalized risk-prediction models for venous thromboembolism among hospitalized adults
优化住院成人静脉血栓栓塞个性化风险预测模型的实施
  • 批准号:
    10658198
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
Precision Pharmacogenomic Perioperative Prediction
精准药物基因组围手术期预测
  • 批准号:
    10643419
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
Optimization of monitoring, prediction and phenotyping of deterioration of inhospital patients using machine learning and multimodal real time data
使用机器学习和多模态实时数据优化住院患者病情恶化的监测、预测和表型分析
  • 批准号:
    10735863
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
Improving response prediction to neoadjuvant therapy in pancreatic cancer
改善胰腺癌新辅助治疗的反应预测
  • 批准号:
    10784272
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
SIGNALING OF SALIENCE AND PREDICTION ERRORS BY THE INSULA
脑岛发出的显着信号和预测误差
  • 批准号:
    10656971
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
Development of blood-based methylation biomarkers for CRC risk prediction
开发用于 CRC 风险预测的血液甲基化生物标志物
  • 批准号:
    10712300
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
Chronic Graft-Versus-Host Disease Biomarkers: Prediction of Resistance to Therapy
慢性移植物抗宿主病生物标志物:治疗耐药性的预测
  • 批准号:
    10751970
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
Polygenic Prediction of Suicide: Clinical, Ethical and Psychosocial Impact
自杀的多基因预测:临床、伦理和社会心理影响
  • 批准号:
    10649055
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
Improving Phenotypic Classification and Prediction of Treatment Outcomes in Patients with Non-ischemic Cardiomyopathy and Functional Mitral Regurgitation
改善非缺血性心肌病和功能性二尖瓣反流患者的表型分类和治疗结果预测
  • 批准号:
    10717066
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了