Understanding the diffusion-driven colloidal deposition of laser-generated ligand-free nanoparticles on dispersed catalyst supports
了解激光生成的无配体纳米粒子在分散催化剂载体上的扩散驱动胶体沉积
基本信息
- 批准号:428175685
- 负责人:
- 金额:--
- 依托单位:
- 依托单位国家:德国
- 项目类别:Research Grants
- 财政年份:2019
- 资助国家:德国
- 起止时间:2018-12-31 至 2022-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The new and further developments of nano-based catalysts has a great economic potential. A flexible method for the preparation of heterogeneous catalysts is the colloidal deposition of nanoparticles on support materials. Particle deposition can be initiated by electrostatically attractive interactions of charged particles in liquids. However, diffusion driven processes are also important, which can be observed in particular in the case of defect-rich carrier materials. While particle adsorption in the electrostatically attractive regime suggests an inevitably spontaneous and nonspecific deposition mechanism, a selective and specific adsorption is expected especially on defect-rich adsorbents, in the case of the electrostatically repulsive region. Thus electrostatically-driven particle adsorption causes agglomeration due to the high charge density, while in the electrostatically repulsive (diffusion-controlled) area the particles can be deposited homogeneously. Due to an existing energy barrier in the electrostatic repulsive region, the adsorption of several nanoparticles at the same time is unfavorable. These Aspects have been less studied in the literature, in particular for ligand-free conditions. Such ligand-free colloids are undoubtedly ideal model materials for colloidal particle dynamic investigations. Therefore, the aim of this project is to gain an understanding of the diffusion-driven particle adsorption by systematic investigations and thus to enable targeted control in the production of heterogeneous catalysts. On the basis of a well-founded hypotheses, an effect mechanism will be developed, which will describe the role of various surface defects on particle adsorption. For this purpose, ligand-free nanoparticles will be used and supports with different oxygen vacancies, facets and functional groups will be selected. Various characterization methods are used to elucidate the nanoparticle-defect interaction: photoelectron spectroscopy (particle oxidation, electronic structure, particle-carrier interaction), Raman spectroscopy (vibrational band of carrier-nanoparticle interaction), electron microscopy (particle size, shape and distribution), X-ray diffraction (crystal structure), IR spectroscopy (functional groups), thermogravimetry (particle mass loading), BET method (catalyst surface), UV-VIS spectroscopy (band gap, deposition efficiency, colloidal stability), measurement of zeta potential (colloidal stability, surface charge) and electrocatalysis (catalytic activity and stability ORR). Finally, by means of systematic studies a wide-ranging model to elucidate the mechanism of diffusion-driven particle deposition will be established and transferred to different material systems.
纳米催化剂的新的和进一步的发展具有巨大的经济潜力。制备多相催化剂的一种灵活方法是将纳米颗粒胶态沉积在载体材料上。粒子沉积可以通过液体中带电粒子的静电吸引相互作用来引发。然而,扩散驱动的过程也很重要,特别是在富含缺陷的载体材料的情况下可以观察到。虽然在静电吸引制度的颗粒吸附表明一个不可避免的自发和非特异性的沉积机制,一个选择性和特异性吸附预计特别是在缺陷丰富的吸附剂,在静电排斥区域的情况下。因此,静电驱动的颗粒吸附由于高电荷密度而导致团聚,而在静电排斥(扩散控制)区域中,颗粒可以均匀地沉积。由于在静电排斥区域中存在能量势垒,同时吸附几个纳米颗粒是不利的。这些方面在文献中研究较少,特别是对于无配体条件。这种无配体的胶体无疑是胶体粒子动力学研究的理想模型材料。因此,本项目的目的是通过系统的研究来了解扩散驱动的颗粒吸附,从而在多相催化剂的生产中实现有针对性的控制。在充分假设的基础上,提出了各种表面缺陷对颗粒吸附的影响机理。为此,将使用无配体的纳米颗粒,并选择具有不同氧空位、晶面和官能团的载体。使用各种表征方法来阐明纳米颗粒-缺陷相互作用:光电子能谱(粒子氧化、电子结构、粒子-载流子相互作用)、拉曼光谱(载体-纳米颗粒相互作用的振动带),电子显微镜(粒度、形状和分布),X射线衍射(晶体结构),IR光谱(官能团),热重分析(颗粒质量负载),BET法(催化剂表面),UV-VIS光谱(带隙、沉积效率、胶体稳定性)、zeta电位测量(胶体稳定性、表面电荷)和电催化(催化活性和稳定性ORR)。最后,通过系统的研究,将建立一个广泛的模型来阐明扩散驱动的颗粒沉积机制,并将其转移到不同的材料系统。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Professor Dr.-Ing. Stephan Barcikowski, since 5/2020其他文献
Professor Dr.-Ing. Stephan Barcikowski, since 5/2020的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似国自然基金
带drift-diffusion项的抛物型偏微分方程组的能控性与能稳性
- 批准号:61573012
- 批准年份:2015
- 资助金额:49.0 万元
- 项目类别:面上项目
Levy过程驱动的随机Fast-Diffusion方程的Harnack不等式及其应用
- 批准号:11126079
- 批准年份:2011
- 资助金额:3.0 万元
- 项目类别:数学天元基金项目
基于非血流信号的脑功能成像技术与探测研究
- 批准号:81071149
- 批准年份:2010
- 资助金额:35.0 万元
- 项目类别:面上项目
基于扩散磁共振成像脑白质纤维重建中的多纤维交叉问题研究
- 批准号:81000634
- 批准年份:2010
- 资助金额:20.0 万元
- 项目类别:青年科学基金项目
半导体物理中的非线性偏微分方程组
- 批准号:10541001
- 批准年份:2005
- 资助金额:4.0 万元
- 项目类别:专项基金项目
相似海外基金
Accurate and Individualized Prediction of Excitation-Inhibition Imbalance in Alzheimer's Disease using Data-driven Neural Model
使用数据驱动的神经模型准确、个性化地预测阿尔茨海默病的兴奋抑制失衡
- 批准号:
10727356 - 财政年份:2023
- 资助金额:
-- - 项目类别:
CAS: Estimates of the decay of diffusion induced flows in strongly stratified fluids and ergodic mixing properties of solutes driven by randomly moving walls in viscous fluids.
CAS:对强分层流体中扩散诱导流的衰减以及粘性流体中随机移动壁驱动的溶质的遍历混合特性的估计。
- 批准号:
2308063 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Standard Grant
Microstructural Injury to the Brainstem and Spinal Cord Determines Outcomes in CM and SM
脑干和脊髓的微结构损伤决定 CM 和 SM 的结果
- 批准号:
10629123 - 财政年份:2023
- 资助金额:
-- - 项目类别:
A Modular Framework for Data-Driven Neurogenetics to Predict Complex and Multidimensional Autistic Phenotypes
数据驱动神经遗传学预测复杂和多维自闭症表型的模块化框架
- 批准号:
10826595 - 财政年份:2023
- 资助金额:
-- - 项目类别:
A pathophysiology driven spatial dynamic modeling framework for personalized prediction and precision medicine
用于个性化预测和精准医疗的病理生理学驱动的空间动态建模框架
- 批准号:
10797133 - 财政年份:2022
- 资助金额:
-- - 项目类别:
ENIGMA Bipolar Initiative: A Global Study of Imaging Genomics & Clinical Outcomes
ENIGMA 双极倡议:影像基因组学的全球研究
- 批准号:
10598611 - 财政年份:2022
- 资助金额:
-- - 项目类别:
Electrophysiological Biomarkers to Optimize DBS for Depression
电生理生物标志物优化 DBS 治疗抑郁症
- 批准号:
10604638 - 财政年份:2022
- 资助金额:
-- - 项目类别:
Electrophysiological Biomarkers to Optimize DBS for Depression
电生理生物标志物优化 DBS 治疗抑郁症
- 批准号:
10647096 - 财政年份:2022
- 资助金额:
-- - 项目类别:
Non-invasive, image-based, in-vivo assessment of tumor hypoxia to guide hypoxia-driven adaptive radiation therapy
对肿瘤缺氧进行非侵入性、基于图像的体内评估,以指导缺氧驱动的适应性放射治疗
- 批准号:
10661802 - 财政年份:2022
- 资助金额:
-- - 项目类别:
CAREER: Diffusion-Driven Degradation and Failure Mechanisms in Architected Composites
职业:建筑复合材料中扩散驱动的降解和失效机制
- 批准号:
2046476 - 财政年份:2021
- 资助金额:
-- - 项目类别:
Standard Grant