Proton Transfer in Protic Ionic Liquids

质子离子液体中的质子转移

基本信息

项目摘要

Non-flammable ionic liquids – salts that are liquid at room temperature – have the potential to replace electrolytes, however, the high viscosity of most ‘conventional’ ionic liquids makes charge transport too slow for electrochemical applications. This drawback can be circumvented by using protic ionic liquids, for which charge transport originates not only from motion of bulky ions but also from transport of small and light protons. Charge transport can thus be decoupled from mass transport and the conductivity can be increased. It is however difficult to asses how much – if at all – proton transport enhances the electrolyte conductivity. So far this has been mainly estimated from the protons’ equilibrium distribution or from the long-ranged transport of all charge carriers. As none of these measures can isolate proton conduction, these studies have led to unsatisfactory and inconsistent results. Here we propose a detailed investigation of charge transport in protic ionic liquids at all relevant time- and length-scales. This will be achieved by (i) isolating the contribution of proton transfers to broadband dielectric spectra using a combination of experiments and simulations. We will establish reversible proton transfer in polarizable MD simulations such that agreement with experimental spectra from Megahertz to far-infrared frequencies for various pure methylimidazolium based ionic liquids and their mixtures with the polar solvent acetonitrile is achieved. Having established the methodology for these model systems, we aim at (ii) understanding the fundamental mechanisms of proton conductivity in protic ionic liquids. To this end, we will vary the proton donor strength of the ionic liquid anion using fluorinated carboxylic acids. Using the established methodology we will elucidate the effect of the proton equilibrium between the anion and the cation on proton conduction. To further extract long-ranged proton mobilities, we will use photoacids for a triggered release of excess protons and trace their transport in real-time via infrared detection of its arrival at an accepting base.We envision that the combination of experimental results and reactive, polarizable molecular dynamics simulations offers a novel strategy to elucidate and model charge transport in protic ionic liquids with impact on the design of future electrolytes.
不易燃的离子液体-在室温下为液体的盐-具有替代电解质的潜力,然而,大多数“常规”离子液体的高粘度使得电荷传输对于电化学应用来说太慢。这个缺点可以通过使用质子离子液体来规避,对于质子离子液体,电荷传输不仅源于大体积离子的运动,而且还源于小而轻的质子的传输。因此,电荷传输可以与质量传输解耦,并且电导率可以增加。然而,很难评估质子传输增强电解质电导率的程度(如果有的话)。到目前为止,这主要是从质子的平衡分布或从所有电荷载流子的长程输运来估计的。由于这些措施都不能隔离质子传导,这些研究导致了不满意和不一致的结果。在这里,我们提出了一个详细的调查质子离子液体中的电荷传输在所有相关的时间和长度尺度。这将通过(i)使用实验和模拟的组合来隔离质子转移对宽带介电谱的贡献来实现。我们将建立可逆的质子转移在极化MD模拟,从而实现协议与实验光谱从兆赫到远红外频率的各种纯甲基咪唑基离子液体和它们的混合物与极性溶剂乙腈。建立了这些模型系统的方法,我们的目标是(ii)了解质子离子液体中质子导电性的基本机制。为此,我们将使用氟化羧酸改变离子液体阴离子的质子供体强度。使用建立的方法,我们将阐明质子传导的阴离子和阳离子之间的质子平衡的效果。为了进一步提取长程质子迁移率,我们将使用光酸来触发过量质子的释放,并通过红外检测其到达接受基地来实时跟踪它们的运输。极化分子动力学模拟提供了一种新的策略来阐明和模拟质子离子液体中的电荷传输,其对未来电解质的设计具有影响。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Dr. Johannes Hunger其他文献

Dr. Johannes Hunger的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Dr. Johannes Hunger', 18)}}的其他基金

Rational design of ion-pair receptors for selective binding of hazardous salts
选择性结合有害盐的离子对受体的合理设计
  • 批准号:
    391416132
  • 财政年份:
    2018
  • 资助金额:
    --
  • 项目类别:
    Research Grants
What makes the guanidinium cation so special?
是什么让胍盐阳离子如此特别?
  • 批准号:
    252839646
  • 财政年份:
    2014
  • 资助金额:
    --
  • 项目类别:
    Research Grants
Ultrafast spectroscopy of aqueous proton conduction in nano-chanels and nano-pools
纳米通道和纳米池中水质子传导的超快光谱
  • 批准号:
    178619184
  • 财政年份:
    2010
  • 资助金额:
    --
  • 项目类别:
    Research Fellowships
Modellierung in Chemie und Wissenschaftsphilosophie: Theorienwandel und Kausale Inferenz in der Chemie
化学和科学哲学中的建模:化学中的理论变化和因果推理
  • 批准号:
    5285216
  • 财政年份:
    2001
  • 资助金额:
    --
  • 项目类别:
    Independent Junior Research Groups

相似国自然基金

具有时序迁移能力的Spiking-Transfer learning (脉冲-迁移学习)方法研究
  • 批准号:
    61806040
  • 批准年份:
    2018
  • 资助金额:
    20.0 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Staffordshire University - Malone Group GB Limited - Knowledge transfer partnerships (KTP): 2023 to 2024 Round 3
斯塔福德郡大学 - Malone Group GB Limited - 知识转移合作伙伴关系 (KTP):2023 年至 2024 年第 3 轮
  • 批准号:
    10082161
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Knowledge Transfer Network
Trustworthy Hypothesis Transfer Learning
可信假设迁移学习
  • 批准号:
    DE240101089
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Discovery Early Career Researcher Award
NSF PRFB FY23: Understanding the evolutionary importance and vectoring mechanisms of horizontal gene transfer within a parasitic plant system
NSF PRFB FY23:了解寄生植物系统内水平基因转移的进化重要性和矢量机制
  • 批准号:
    2305877
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Fellowship Award
CAREER: Precise Mathematical Modeling and Experimental Validation of Radiation Heat Transfer in Complex Porous Media Using Analytical Renewal Theory Abstraction-Regressions
职业:使用分析更新理论抽象回归对复杂多孔介质中的辐射传热进行精确的数学建模和实验验证
  • 批准号:
    2339032
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
CAS: Proton-Coupled Electron Transfer Reactions from Ligand-to-Metal Charge Transfer Excited States.
CAS:配体到金属电荷转移激发态的质子耦合电子转移反应。
  • 批准号:
    2400727
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
A Multi-Level Investigation of Engagement in Technology Transfer
参与技术转让的多层次调查
  • 批准号:
    2345612
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
CAS: Highly Interacting Panchromatic Push-Pull Systems: Symmetry Breaking and Quantum Coherence in Electron Transfer
CAS:高度交互的全色推拉系统:电子转移中的对称破缺和量子相干性
  • 批准号:
    2345836
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
ART: Re-engineering Technology Transfer at the University of Wyoming
ART:怀俄明大学的技术转让再造
  • 批准号:
    2331477
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Cooperative Agreement
ERI: Unravel Charge Transfer Mechanisms in the Bulk and at Interphases and Interfaces of Ionogel Solid Electrolytes for High-Power-Density All-Solid-State Li Metal Batteries
ERI:揭示高功率密度全固态锂金属电池的离子凝胶固体电解质的本体以及相间和界面的电荷转移机制
  • 批准号:
    2347542
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Understanding Emission, Absorption and Energy Transfer Involving Classical and Quantum Light Interacting with Molecules
了解涉及经典光和量子光与分子相互作用的发射、吸收和能量转移
  • 批准号:
    2347622
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了