What makes the guanidinium cation so special?
是什么让胍盐阳离子如此特别?
基本信息
- 批准号:252839646
- 负责人:
- 金额:--
- 依托单位:
- 依托单位国家:德国
- 项目类别:Research Grants
- 财政年份:2014
- 资助国家:德国
- 起止时间:2013-12-31 至 2017-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
When studying the effect of ions on the stability of proteins, simple inorganic cations follow an important rule of thumb: the higher the surface charge density of the cation the stronger the ion destabilizes proteins in solution. However, the rather bulky, organic guanidinium cation (Gdm+), having a low surface charge density, is amongst the most effective protein denaturants. Thus, Gdm+ is a prominent exception in the Hofmeister series. In recent years it became apparent that this exceptional effect of Gdm+ on proteins cannot be explained from bulk properties of aqueous guanidinium electrolytes, but must be related to the specific interaction of Gdm+ with proteins.Indeed, computer simulations suggest specific interaction of Gdm+ with model proteins. However, to date the exact mechanism how Gdm+ interacts with proteins is controversially discussed. It has been suggested that Gdm+ ions bind to the peptide backbone, interact with the positively or negatively charged protein side-chains, or cover hydrophobic fragments of the proteins. Each of these interaction mechanisms is claimed to lead to the unfolding of the protein.We will study the interaction of Gdm+ with small model proteins experimentally and test the different scenarios mentioned above. We will determine the binding strength of Gdm+ to hydrophobic moieties, charged side chains, and to the amide backbone. This will reveal the predominant unfolding mechanism and what makes the guanidinium cation such an efficient protein denaturant.
当研究离子对蛋白质稳定性的影响时,简单的无机阳离子遵循一个重要的经验法则:阳离子的表面电荷密度越高,离子使蛋白质在溶液中不稳定的能力越强。然而,具有低表面电荷密度的相当庞大的有机胍阳离子(Gdm+)是最有效的蛋白质变性剂之一。因此,Gdm+是Hofmeister系列中的一个突出例外。近年来,人们发现Gdm+对蛋白质的这种特殊作用不能用胍盐电解质的整体性质来解释,而必须与Gdm+与蛋白质的特异性相互作用有关,实际上,计算机模拟表明Gdm+与模型蛋白质的特异性相互作用。然而,迄今为止,Gdm+如何与蛋白质相互作用的确切机制是有争议的讨论。已经表明Gdm+离子结合到肽骨架上,与带正电荷或负电荷的蛋白质侧链相互作用,或覆盖蛋白质的疏水片段。这些相互作用机制中的每一种都声称会导致蛋白质的解折叠。我们将通过实验研究Gdm+与小模型蛋白质的相互作用,并测试上述不同的场景。我们将确定Gdm+与疏水部分、带电侧链和酰胺骨架的结合强度。这将揭示主要的解折叠机制,以及是什么使胍阳离子成为如此有效的蛋白质变性剂。
项目成果
期刊论文数量(4)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Dr. Johannes Hunger其他文献
Dr. Johannes Hunger的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Dr. Johannes Hunger', 18)}}的其他基金
Proton Transfer in Protic Ionic Liquids
质子离子液体中的质子转移
- 批准号:
428338147 - 财政年份:2020
- 资助金额:
-- - 项目类别:
Research Grants
Rational design of ion-pair receptors for selective binding of hazardous salts
选择性结合有害盐的离子对受体的合理设计
- 批准号:
391416132 - 财政年份:2018
- 资助金额:
-- - 项目类别:
Research Grants
Ultrafast spectroscopy of aqueous proton conduction in nano-chanels and nano-pools
纳米通道和纳米池中水质子传导的超快光谱
- 批准号:
178619184 - 财政年份:2010
- 资助金额:
-- - 项目类别:
Research Fellowships
Modellierung in Chemie und Wissenschaftsphilosophie: Theorienwandel und Kausale Inferenz in der Chemie
化学和科学哲学中的建模:化学中的理论变化和因果推理
- 批准号:
5285216 - 财政年份:2001
- 资助金额:
-- - 项目类别:
Independent Junior Research Groups
相似海外基金
What Works Policy Fellowship - Youth Futures Foundation Understanding What Makes for Quality Work Fellowship UKRI Policy Fellowship
什么有效的政策奖学金 - 青年未来基金会 了解什么是高质量工作奖学金 UKRI 政策奖学金
- 批准号:
ES/Y005007/1 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Fellowship
Exploratory research to elucidate the molecular mechanisms by which depression makes heart failure more severe and to reconstruct heart failure treatment strategies.
探索性研究旨在阐明抑郁症使心力衰竭更加严重的分子机制,并重建心力衰竭治疗策略。
- 批准号:
23K07507 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Scientific Research (C)
What makes a place busy? Characterising the spatiotemporal elements of the ambient population using a range of data sources
是什么让一个地方变得忙碌?
- 批准号:
2872654 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Studentship
The molecular mechanism by which circadian clock makes the petals of the Japanese morning glory open in the morning
生物钟使日本牵牛花的花瓣在早晨开放的分子机制
- 批准号:
23KJ1004 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Grant-in-Aid for JSPS Fellows
LEAPS-MPS: CAS: What Makes Flow Batteries Fail? Establishing 'Stress Test' Protocols for Accelerated Characterization of New Chemistries
LEAPS-MPS:CAS:是什么导致液流电池失效?
- 批准号:
2316559 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Standard Grant
The genetics of flowering in raspberry and blackberry - what makes a primocane?
覆盆子和黑莓开花的遗传学 - 是什么造就了樱草花?
- 批准号:
2826350 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Studentship
An AI-driven customisable software solution that makes EDI data analytics affordable and accessible for SMEs, enabling them to improve diversity
人工智能驱动的可定制软件解决方案,使中小企业能够负担得起且易于使用 EDI 数据分析,从而提高多样性
- 批准号:
10035577 - 财政年份:2022
- 资助金额:
-- - 项目类别:
Collaborative R&D
What makes a face recognizable?
是什么让面孔具有可识别性?
- 批准号:
DGECR-2022-00272 - 财政年份:2022
- 资助金额:
-- - 项目类别:
Discovery Launch Supplement
Absence makes the will grow stronger? Boosting abstinence campaigns to reduce alcohol and meat consumption to improve public health (Ref: 4229)
缺席会让意志变得更坚强吗?
- 批准号:
2720259 - 财政年份:2022
- 资助金额:
-- - 项目类别:
Studentship
What can artful history teach us about how to write about archives in a way that honours the past yet makes history come alive?
巧妙的历史可以教给我们什么关于如何以一种尊重过去但又让历史变得生动的方式来书写档案?
- 批准号:
2837938 - 财政年份:2022
- 资助金额:
-- - 项目类别:
Studentship