Study of Magnetic Excitations in Random Systems

随机系统中的磁激励研究

基本信息

项目摘要

It is the aim of the present project to clarify the nature of magnetic excitations in random magnetic systems with competing spin anisotropies and with competing exchange interactions. The important findings obtained from this study are summarized below :(1) The magnetic excitations in a randomly diluted XY antiferromagnet Mg_<1-x>Co_xCl_2 are studied by Electron Spin Resonance (ESR) technique. We have observed several ESR lines in the samples with x below the percolation concentration (x_p). One of them is interpreted as arising from Co^<2+> pair coupled by anisotropic exchange interaction. The others are interpreted as a uniform mode whose frequency vs. magnetic field relation is the same as that in the ordered phase with x above x_p.(2) The magnetic excitation in a randomly diluted Ising antiferromagnet Mg_<1-x>Fe_xCl_2 are studied by ESR method. It is shown from the analysis of the result that both of the single ion anisotropy and the anisotropic exchange interaction contribute to the anisotropy energy of FeCl_2 with nearly the same amount.(3) The magnetic excitations in the typical spin one linear chain Heisenberg antiferromagnet Ni (C_2H_8N_2) _2NO_2 (ClO_4) are studied in which some of the Ni atoms are randomly substituted for Cu. Novel ESR lines are observed and are analyzed by the following model. When Cu atoms are introduced into the valence-bond -solid ground state, spin 1/2 degrees of freedom in the Ni sites neighboring the Cu recover. We have calculated the excitation spectra of the weakly coupled three spin 1/2 system and have obtained a good agreement between the theory and the experiment.
本项目的目的是阐明具有竞争自旋各向异性和竞争交换相互作用的随机磁系统中磁激发的性质。(1)用电子自旋共振(ESR)技术研究了无规稀释XY反铁磁体Mg_<1-x>Co_xCl_2的磁激发。我们在x低于逾渗浓度(x_p)的样品中观察到几条ESR谱线。其中之一是由各向异性交换作用耦合的Co^&lt;2+&gt;对引起的。其他的模式被解释为均匀模式,其频率与磁场的关系与x高于xp的有序相中的频率与磁场的关系相同。(2)用ESR方法研究了无规稀释Ising反铁磁体Mg_ Fe_xCl_2的磁激发<1-x>。结果表明,单离子各向异性和各向异性交换作用对FeCl_2各向异性能的贡献几乎相等。(3)本文研究了典型的单自旋线性海森伯反铁磁体Ni(C_2H_8N_2)_2NO_2(ClO_4)的磁激发,其中Ni原子随机取代了Cu原子。观察到新的ESR谱线,并通过以下模型进行分析。当Cu原子被引入价键固体基态时,邻近Cu的Ni位的自旋1/2自由度恢复。我们计算了弱耦合三自旋1/2系统的激发谱,理论与实验符合得很好。

项目成果

期刊论文数量(32)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
K. Katsumata and J. Tuchendler: ""Magnetic Excitations in the Disordered System Mg_<1-x>Co_xCl_2"" Proc. Relarxation in Complex Systems and Related Topics, Ed. I. A. Campbell and C. Giovannella (Plenum, New York). 67-70 (1990)
K. Katsumata 和 J. Tuchendler:“无序系统 Mg_<1-x>Co_xCl_2 中的磁激发”Proc。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
萩原 政幸: "Observation of S=1/2 Degrees of Freedom in an S=1 LinearーChain Heisenberg Antiferromagnet" Physical Review Letters. 65. 3181-3184 (1990)
Masayuki Hagiwara:“S=1 线性链海森堡反铁磁体中 S=1/2 自由度的观察”《物理评论快报》65。3181-3184 (1990)。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
勝又紘一: "Electron Spin Resonance in the Diluted Uniaxial Antiferromagnet Mg_<l-x>Fe_xCl_2" Solid State Commun.
Koichi Katsumata:“稀释单轴反铁磁体 Mg_<l-x>Fe_xCl_2 中的电子自旋共振”固态通讯。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
萩原政幸: "ESR Study on the Ground State Properties of the S=1 Linear Chain Heisenberg Antiferromagnet" J.Magn.Magn.Mater.
Masayuki Hagiwara:“S=1 线性链海森堡反铁磁体基态特性的 ESR 研究”J.Magn.Magn.Mater。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
J. Tuchendler and K. Katsumata: ""Electron Spin Resonance in the Diluted Uniaxial Antiferromagnet Mg_<1-x>Fe_xCl_2" Solid State Commun. 74. 1159-1163 (1990)
J. Tuchendler 和 K. Katsumata:“稀释单轴反铁磁体 Mg_<1-x>Fe_xCl_2 中的电子自旋共振”固态通讯。74. 1159-1163 (1990)
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

KATSUMATA Koichi其他文献

KATSUMATA Koichi的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('KATSUMATA Koichi', 18)}}的其他基金

Synchrotron X-ray Magnetic Scattering Studies under Strong Magnetic Fields
强磁场下同步加速器X射线磁散射研究
  • 批准号:
    14204037
  • 财政年份:
    2002
  • 资助金额:
    $ 4.42万
  • 项目类别:
    Grant-in-Aid for Scientific Research (A)
The Physics and Chemistry of Quantum Magnetism
量子磁学物理与化学
  • 批准号:
    11694110
  • 财政年份:
    1999
  • 资助金额:
    $ 4.42万
  • 项目类别:
    Grant-in-Aid for Scientific Research (A).
Joint Research on Quantum Effects in Magnetic Systems
磁系统量子效应联合研究
  • 批准号:
    05044070
  • 财政年份:
    1993
  • 资助金额:
    $ 4.42万
  • 项目类别:
    Grant-in-Aid for international Scientific Research
Study of Quantum Phenomena in a One-Dimensional Magnetic System
一维磁系统中的量子现象研究
  • 批准号:
    03452047
  • 财政年份:
    1991
  • 资助金额:
    $ 4.42万
  • 项目类别:
    Grant-in-Aid for General Scientific Research (B)
Study of the Ground State Properties in Random Magnetic Systems
随机磁系统基态特性的研究
  • 批准号:
    60460023
  • 财政年份:
    1985
  • 资助金额:
    $ 4.42万
  • 项目类别:
    Grant-in-Aid for General Scientific Research (B)

相似海外基金

Innovating the foundation of Ising spin glass theory by an approach from discrete mathematics
通过离散数学方法创新伊辛自旋玻璃理论的基础
  • 批准号:
    23K03192
  • 财政年份:
    2023
  • 资助金额:
    $ 4.42万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Kardar-Parisi-Zhang Universality Class, Integrable Differential Equations, and Spin Glass
Kardar-Parisi-Zhang 普适类、可积微分方程和自旋玻璃
  • 批准号:
    2246790
  • 财政年份:
    2023
  • 资助金额:
    $ 4.42万
  • 项目类别:
    Standard Grant
Spin Glass Systems as a Lossy Compression
作为有损压缩的旋转玻璃系统
  • 批准号:
    21K12046
  • 财政年份:
    2021
  • 资助金额:
    $ 4.42万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Random Matrices, Spin Glass, and Interacting Particle Systems
随机矩阵、自旋玻璃和相互作用粒子系统
  • 批准号:
    1954790
  • 财政年份:
    2020
  • 资助金额:
    $ 4.42万
  • 项目类别:
    Standard Grant
Formation of single-crystal Si spin glass with a single W atom as a magnetic dopant and elucidation of its magnetic properties
以单个W原子作为磁性掺杂剂的单晶硅自旋玻璃的形成及其磁性能的阐明
  • 批准号:
    20H02560
  • 财政年份:
    2020
  • 资助金额:
    $ 4.42万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Structure of the Gibbs distribution in spin glass models with applications
自旋玻璃模型中吉布斯分布的结构及其应用
  • 批准号:
    RGPIN-2015-04637
  • 财政年份:
    2019
  • 资助金额:
    $ 4.42万
  • 项目类别:
    Discovery Grants Program - Individual
Optimal control theory solves spin glass models with transverse field
最优控制理论求解横向场自旋玻璃模型
  • 批准号:
    19K23418
  • 财政年份:
    2019
  • 资助金额:
    $ 4.42万
  • 项目类别:
    Grant-in-Aid for Research Activity Start-up
Random Matrices, Statistical Applications, and Spin Glass Dynamics
随机矩阵、统计应用和自旋玻璃动力学
  • 批准号:
    1855509
  • 财政年份:
    2019
  • 资助金额:
    $ 4.42万
  • 项目类别:
    Continuing Grant
Structure of the Gibbs distribution in spin glass models with applications
自旋玻璃模型中吉布斯分布的结构及其应用
  • 批准号:
    RGPIN-2015-04637
  • 财政年份:
    2018
  • 资助金额:
    $ 4.42万
  • 项目类别:
    Discovery Grants Program - Individual
Preparation of super spin glass magnetic nanoparticles and biomedical application for hyperthermia therapy
超自旋玻璃磁性纳米颗粒的制备及其热疗生物医学应用
  • 批准号:
    17H02762
  • 财政年份:
    2017
  • 资助金额:
    $ 4.42万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了