General principles of structural maturation and integration of newly born granule cells in the hippocampal network studied by time-lapse imaging and computational models

通过延时成像和计算模型研究海马网络中新生颗粒细胞结构成熟和整合的一般原理

基本信息

项目摘要

Adult neurogenesis plays a unique role in the hippocampus because it leads to the integration of newborn neurons into a preformed circuit with well-defined connectivity and is directly linked with the formation of novel memories. Here, we will take advantage of the maturation of postnatally and adult-born dentate granule cells (GCs) to study the algorithmic implementation of the integration process of new neurons into existing networks and the way in which this is reflected in the temporal dynamics of dendritic tree formation. We will link dendritic spinogenesis with the critical time period of functional integration. Our proposal focuses on following questions: What are the dynamics of the structural growth process? Do spine formation and functional integration lead to stabilization of dendritic structures? What dynamic processes determine dendritic tree structure in the mature hippocampus? To address these issues we will use state-of-the-art experimental procedures combining detailed in vitro time-lapse analyses with a large database of in vivo data and precise biophysical and morphological modelling techniques. The results will allow us to dissect the computational role of dendritic tree maturation as well as the dynamics of adult born GC integration in the hippocampal network. Using combined experimental and modeling approach, we will study the effects of network activity on the pruning of dendritic branches in newborn neurons. Recently developed new methods of morphological modeling based on optimal wiring principles will enable us to identify general principles of growth and network integration of dentate granule cells. 3D-reconstructions of dendrites and spines, their morphological measurements as well as new and greatly improved, anatomically realistic morphological models of newly-born dentate granule cells will be freely available for the scientific community.
成人神经发生在海马体中发挥着独特的作用,因为它导致新生神经元整合到具有明确连接的预制回路中,并与新记忆的形成直接相关。在这里,我们将利用出生后和成人出生的齿状颗粒细胞(GC)的成熟来研究新神经元整合到现有网络中的算法实现,以及这在树突树形成的时间动态中反映的方式。我们将把树突棘发生与功能整合的关键时间段联系起来。我们的建议重点关注以下问题:结构性增长过程的动力是什么?脊柱形成和功能整合是否会导致树突结构的稳定?哪些动态过程决定成熟海马的树突树结构?为了解决这些问题,我们将使用最先进的实验程序,将详细的体外延时分析与体内数据的大型数据库以及精确的生物物理和形态学建模技术相结合。这些结果将使我们能够剖析树突树成熟的计算作用以及海马网络中成年出生的 GC 整合的动态。使用实验和建模相结合的方法,我们将研究网络活动对新生神经元树突状分支修剪的影响。最近开发的基于最佳布线原理的形态建模新方法将使我们能够确定齿状颗粒细胞生长和网络整合的一般原理。树突和棘的 3D 重建、它们的形态测量以及新的、大大改进的、解剖学上真实的新生齿状颗粒细胞形态模型将免费提供给科学界。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Privatdozent Dr. Stephan Schwarzacher其他文献

Privatdozent Dr. Stephan Schwarzacher的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

相似国自然基金

基于First Principles的光催化降解PPCPs同步脱氮体系构建及其电子分配机制研究
  • 批准号:
    51778175
  • 批准年份:
    2017
  • 资助金额:
    59.0 万元
  • 项目类别:
    面上项目

相似海外基金

First-principles based machine learning phase field model for structural and battery materials
基于第一性原理的结构和电池材料机器学习相场模型
  • 批准号:
    23K13537
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Machine Learning for Ventricular Arrhythmias
室性心律失常的机器学习
  • 批准号:
    10658931
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
Biological Magnetic Resonance Data Bank
生物磁共振数据库
  • 批准号:
    10714470
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
Advancing Health Equity Through Innovative Community Capacity Building, Data Science & Delivering Community-Centered Structural Interventions & Outcomes: Drexel's ComPASS Coordinating Center (C3)
通过创新的社区能力建设、数据科学促进健康公平
  • 批准号:
    10770882
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
Exploration of the principles of structural changes of material and field in solids and plasmas under extreme conditions with high-power lasers
用高功率激光器探索极端条件下固体和等离子体中材料和场的结构变化原理
  • 批准号:
    23K20038
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Fund for the Promotion of Joint International Research (International Leading Research )
Structural and functional principles of activation and regulation of the transient receptor potential channel TRPV3.
瞬时受体电位通道 TRPV3 激活和调节的结构和功能原理。
  • 批准号:
    10365295
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
Structural and functional principles underlying germline genome transmission
种系基因组传播的结构和功能原理
  • 批准号:
    10676300
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
Structural and functional principles underlying germline genome transmission
种系基因组传播的结构和功能原理
  • 批准号:
    10535616
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
Structural and functional principles of activation and regulation of the transient receptor potential channel TRPV3.
瞬时受体电位通道 TRPV3 激活和调节的结构和功能原理。
  • 批准号:
    10559520
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
Prenatal Genetic Diagnosis by Genomic Sequencing: A Prospective Evaluation
通过基因组测序进行产前基因诊断:前瞻性评估
  • 批准号:
    10522736
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了