Structural and functional principles underlying germline genome transmission

种系基因组传播的结构和功能原理

基本信息

  • 批准号:
    10676300
  • 负责人:
  • 金额:
    $ 48.9万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2022
  • 资助国家:
    美国
  • 起止时间:
    2022-08-03 至 2027-04-30
  • 项目状态:
    未结题

项目摘要

Human reproductive success and the development of healthy offspring depend on accurate transmission of genetic material from parent to child. Homologous recombination during meiosis plays a central role in this genetic transmission by ensuring accurate chromosome segregation. Errors in recombination can lead to aneuploidy or mutations in gametes that in turn cause miscarriage or developmental defects in children. Understanding the mechanism and regulation of recombination is thus critical for understanding how meiotic errors affect human fertility and child development, but the molecular principles of recombination remain incompletely understood because of a paucity of biochemical and structural information. Meiotic recombination initiates with DNA double-strand breaks (DSBs) made by the Spo11 protein in collaboration with a suite of accessory factors. We recently overcame longstanding barriers to progress by purifying for the first time recombinant complexes of DSB-promoting proteins. Building on this advance, the Keeney and Patel labs propose to extend their ongoing collaboration to combine biochemical, structural, and single molecule biophysical approaches in vitro with functional experiments in vivo to illuminate the molecular principles that govern how DSB formation by Spo11 occurs. By conducting these studies in parallel on proteins from mouse and Saccharomyces cerevisiae, we will dive deeply into the mechanisms of evolutionarily conserved processes while retaining the ability to explore mammal-specific aspects. Aim 1 will focus on a “core complex” of Spo11 with its direct binding partners TOP6BL (mammals) and Rec102–Rec104–Ski8 (yeast). We will apply cryo-EM, x-ray crystallography, and computational modeling along with biochemical studies to define the structure of Spo11 core complexes and their critical protein-protein and protein-DNA interfaces. We will also test the physiological relevance of our structural and biochemical findings in vivo. To this end, we will use molecular genetic, genomic, and cytological studies in yeast and will employ a novel approach to parallelized genetic screening in mouse by competitively transplanting pools of genetically modified spermatogonial stem cells into testes of germ cell-depleted mice. Aim 2 will focus on the conserved accessory proteins Rec114, Mei4, and Mer2, which are important as a nexus for regulating DSB timing, number and location. We will use NMR spectroscopy, x-ray crystallography, cryo-EM, and computational modeling to define the structures and protein- protein interfaces of heterotrimeric Rec114–Mei4 complexes and of homotetrameric Mer2 complexes. We will use bulk biochemical and single molecule biophysical approaches to define the mechanism and dynamics behind the cooperative assembly of these proteins to form nucleoprotein condensates on DNA, which we hypothesize to be a central feature of their ability to support Spo11 activity. We will also apply a battery of in vivo assays to test functional predictions arising from the structural and biochemical findings.
人类生殖的成功和健康后代的发育取决于基因的准确传播

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Scott Keeney其他文献

Scott Keeney的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Scott Keeney', 18)}}的其他基金

Structural and functional principles underlying germline genome transmission
种系基因组传播的结构和功能原理
  • 批准号:
    10535616
  • 财政年份:
    2022
  • 资助金额:
    $ 48.9万
  • 项目类别:
Mechanism and regulation of meiotic recombination
减数分裂重组的机制和调控
  • 批准号:
    9264548
  • 财政年份:
    2016
  • 资助金额:
    $ 48.9万
  • 项目类别:
Mechanism and regulation of meiotic recombination
减数分裂重组的机制和调控
  • 批准号:
    9920159
  • 财政年份:
    2016
  • 资助金额:
    $ 48.9万
  • 项目类别:
Mechanism and regulation of meiotic recombination
减数分裂重组的机制和调控
  • 批准号:
    10612798
  • 财政年份:
    2016
  • 资助金额:
    $ 48.9万
  • 项目类别:
Mechanism and regulation of meiotic recombination
减数分裂重组的机制和调控
  • 批准号:
    9071085
  • 财政年份:
    2016
  • 资助金额:
    $ 48.9万
  • 项目类别:
Mechanism and regulation of meiotic recombination
减数分裂重组的机制和调控
  • 批准号:
    10393654
  • 财政年份:
    2016
  • 资助金额:
    $ 48.9万
  • 项目类别:
Mechanism and regulation of meiotic recombination
减数分裂重组的机制和调控
  • 批准号:
    10164542
  • 财政年份:
    2016
  • 资助金额:
    $ 48.9万
  • 项目类别:
FASEB SRC on Yeast Chromosome Structure, Replication and Segregation
FASEB SRC 关于酵母染色体结构、复制和分离
  • 批准号:
    8398634
  • 财政年份:
    2012
  • 资助金额:
    $ 48.9万
  • 项目类别:
DNA BREAK REPAIR PROTEIN PHOSPHORYLATION
DNA 断裂修复蛋白磷酸化
  • 批准号:
    8361568
  • 财政年份:
    2011
  • 资助金额:
    $ 48.9万
  • 项目类别:
MEIOTIC RECOMBINATION IN THE YEAST S CEREVISIAE
酿酒酵母中的减数分裂重组
  • 批准号:
    8169197
  • 财政年份:
    2010
  • 资助金额:
    $ 48.9万
  • 项目类别:

相似海外基金

Construction of affinity sensors using high-speed oscillation of nanomaterials
利用纳米材料高速振荡构建亲和传感器
  • 批准号:
    23H01982
  • 财政年份:
    2023
  • 资助金额:
    $ 48.9万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Affinity evaluation for development of polymer nanocomposites with high thermal conductivity and interfacial molecular design
高导热率聚合物纳米复合材料开发和界面分子设计的亲和力评估
  • 批准号:
    23KJ0116
  • 财政年份:
    2023
  • 资助金额:
    $ 48.9万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
Development of High-Affinity and Selective Ligands as a Pharmacological Tool for the Dopamine D4 Receptor (D4R) Subtype Variants
开发高亲和力和选择性配体作为多巴胺 D4 受体 (D4R) 亚型变体的药理学工具
  • 批准号:
    10682794
  • 财政年份:
    2023
  • 资助金额:
    $ 48.9万
  • 项目类别:
Platform for the High Throughput Generation and Validation of Affinity Reagents
用于高通量生成和亲和试剂验证的平台
  • 批准号:
    10598276
  • 财政年份:
    2023
  • 资助金额:
    $ 48.9万
  • 项目类别:
Collaborative Research: DESIGN: Co-creation of affinity groups to facilitate diverse & inclusive ornithological societies
合作研究:设计:共同创建亲和团体以促进多元化
  • 批准号:
    2233343
  • 财政年份:
    2023
  • 资助金额:
    $ 48.9万
  • 项目类别:
    Standard Grant
Collaborative Research: DESIGN: Co-creation of affinity groups to facilitate diverse & inclusive ornithological societies
合作研究:设计:共同创建亲和团体以促进多元化
  • 批准号:
    2233342
  • 财政年份:
    2023
  • 资助金额:
    $ 48.9万
  • 项目类别:
    Standard Grant
Molecular mechanisms underlying high-affinity and isotype switched antibody responses
高亲和力和同种型转换抗体反应的分子机制
  • 批准号:
    479363
  • 财政年份:
    2023
  • 资助金额:
    $ 48.9万
  • 项目类别:
    Operating Grants
Deconstructed T cell antigen recognition: Separation of affinity from bond lifetime
解构 T 细胞抗原识别:亲和力与键寿命的分离
  • 批准号:
    10681989
  • 财政年份:
    2023
  • 资助金额:
    $ 48.9万
  • 项目类别:
CAREER: Engineered Affinity-Based Biomaterials for Harnessing the Stem Cell Secretome
职业:基于亲和力的工程生物材料用于利用干细胞分泌组
  • 批准号:
    2237240
  • 财政年份:
    2023
  • 资助金额:
    $ 48.9万
  • 项目类别:
    Continuing Grant
ADVANCE Partnership: Leveraging Intersectionality and Engineering Affinity groups in Industrial Engineering and Operations Research (LINEAGE)
ADVANCE 合作伙伴关系:利用工业工程和运筹学 (LINEAGE) 领域的交叉性和工程亲和力团体
  • 批准号:
    2305592
  • 财政年份:
    2023
  • 资助金额:
    $ 48.9万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了