Structural and functional principles underlying germline genome transmission
种系基因组传播的结构和功能原理
基本信息
- 批准号:10535616
- 负责人:
- 金额:$ 48.9万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-08-03 至 2027-04-30
- 项目状态:未结题
- 来源:
- 关键词:AddressAffectAffinityAneuploidyBindingBiochemicalBiochemical GeneticsBiological AssayBiological ProcessBiologyCellsChildChild DevelopmentChromosome PairingChromosome SegregationChromosome abnormalityCollaborationsCollectionComplexComputer ModelsComputing MethodologiesCryoelectron MicroscopyCrystallizationCytologyDNADNA BindingDNA Double Strand BreakDefectDevelopmentDevelopmental DisabilitiesEngraftmentEnsureFertilityGeneticGenetic MaterialsGenetic RecombinationGenetic ScreeningGenetic studyGenomeGenomicsGerm CellsGoalsHumanIn VitroInfertilityJointsLeadLocationMammalsMapsMeiosisMeiotic RecombinationMethodsModelingMolecularMolecular GeneticsMouse ProteinMusMutationNMR SpectroscopyNatureNucleoproteinsParentsPhenotypePhysiologicalPlayProcessPropertyProteinsPublicationsRecombinantsRegulationReproductive HealthResolutionRoleSPO11 geneSaccharomyces cerevisiaeSite-Directed MutagenesisSpo11 proteinSpontaneous abortionStructureSurfaceTestingTestisTimeTopoisomeraseTransplantationX-Ray CrystallographyYeastsbiophysical analysisbiophysical techniqueseggexperimental studyhomologous recombinationin vivoinnovationnovel strategiesoffspringprotein structurerecruitreproductive successreproductive system disordersingle moleculesperm cellstem cellsstoichiometrytransmission processyeast genetics
项目摘要
Human reproductive success and the development of healthy offspring depend on accurate transmission of
genetic material from parent to child. Homologous recombination during meiosis plays a central role in this
genetic transmission by ensuring accurate chromosome segregation. Errors in recombination can lead to
aneuploidy or mutations in gametes that in turn cause miscarriage or developmental defects in children.
Understanding the mechanism and regulation of recombination is thus critical for understanding how meiotic
errors affect human fertility and child development, but the molecular principles of recombination remain
incompletely understood because of a paucity of biochemical and structural information. Meiotic recombination
initiates with DNA double-strand breaks (DSBs) made by the Spo11 protein in collaboration with a suite of
accessory factors. We recently overcame longstanding barriers to progress by purifying for the first time
recombinant complexes of DSB-promoting proteins. Building on this advance, the Keeney and Patel labs
propose to extend their ongoing collaboration to combine biochemical, structural, and single molecule
biophysical approaches in vitro with functional experiments in vivo to illuminate the molecular principles that
govern how DSB formation by Spo11 occurs. By conducting these studies in parallel on proteins from mouse
and Saccharomyces cerevisiae, we will dive deeply into the mechanisms of evolutionarily conserved processes
while retaining the ability to explore mammal-specific aspects. Aim 1 will focus on a “core complex” of Spo11
with its direct binding partners TOP6BL (mammals) and Rec102–Rec104–Ski8 (yeast). We will apply cryo-EM,
x-ray crystallography, and computational modeling along with biochemical studies to define the structure of
Spo11 core complexes and their critical protein-protein and protein-DNA interfaces. We will also test the
physiological relevance of our structural and biochemical findings in vivo. To this end, we will use molecular
genetic, genomic, and cytological studies in yeast and will employ a novel approach to parallelized genetic
screening in mouse by competitively transplanting pools of genetically modified spermatogonial stem cells into
testes of germ cell-depleted mice. Aim 2 will focus on the conserved accessory proteins Rec114, Mei4, and
Mer2, which are important as a nexus for regulating DSB timing, number and location. We will use NMR
spectroscopy, x-ray crystallography, cryo-EM, and computational modeling to define the structures and protein-
protein interfaces of heterotrimeric Rec114–Mei4 complexes and of homotetrameric Mer2 complexes. We will
use bulk biochemical and single molecule biophysical approaches to define the mechanism and dynamics
behind the cooperative assembly of these proteins to form nucleoprotein condensates on DNA, which we
hypothesize to be a central feature of their ability to support Spo11 activity. We will also apply a battery of in
vivo assays to test functional predictions arising from the structural and biochemical findings.
人类生殖成功和健康后代的发育取决于准确的传播
遗传物质从父母传给孩子。减数分裂过程中的同源重组在这一过程中起着核心作用
通过确保准确的染色体分离实现遗传传播。重组中的错误可能会导致
配子的非整倍体或突变,进而导致儿童流产或发育缺陷。
因此,了解重组的机制和调控对于了解减数分裂如何进行至关重要。
错误影响人类生育和儿童发育,但重组的分子原理仍然存在
由于缺乏生化和结构信息,人们对此还不完全了解。减数分裂重组
由Spo11蛋白与一套
辅助因素。我们最近通过首次提纯克服了长期存在的进步障碍
DSB促进蛋白的重组复合体。在这一进展的基础上,Keeney和Patel实验室
建议扩展他们正在进行的合作,将生化、结构和单分子结合在一起
体外生物物理方法和体内功能实验,以阐明
控制Spo11形成DSB的方式。通过对小鼠的蛋白质进行平行研究
和酿酒酵母,我们将深入研究进化保守过程的机制
同时保留探索哺乳动物特有方面的能力。目标1将专注于Spo11的“核心复合体”
与其直接结合伙伴TOP6BL(哺乳动物)和Rec102-Rec104-Ski8(酵母)。我们将应用冷冻-EM,
X射线结晶学,计算模型和生化研究,以确定结构
Spo11核心复合体及其关键的蛋白质-蛋白质和蛋白质-DNA界面。我们还将测试
我们在体内的结构和生化发现的生理学相关性。为此,我们将使用分子
酵母的遗传、基因组和细胞学研究,并将采用一种新的方法来并行化遗传
竞争性移植转基因精原干细胞池在小鼠中的筛选
生殖细胞枯竭小鼠的睾丸。目标2将专注于保守的辅助蛋白Rec114、Mei4和
Mer2,它们是调节DSB的时间、数量和位置的重要纽带。我们将使用核磁共振
光谱学、X射线结晶学、低温电子显微镜和计算机建模来定义结构和蛋白质-
异三聚体Rec114-Mei4复合体和同四聚体Mer2复合体的蛋白质界面。我们会
使用整体生物化学和单分子生物物理方法来定义机制和动力学
在这些蛋白质协同组装以在DNA上形成核蛋白缩合物的背后,我们
假设是他们支持Spo11活动能力的一个核心特征。我们还将应用电池中的
活体试验是为了测试结构和生化发现所产生的功能预测。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Scott Keeney其他文献
Scott Keeney的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Scott Keeney', 18)}}的其他基金
Structural and functional principles underlying germline genome transmission
种系基因组传播的结构和功能原理
- 批准号:
10676300 - 财政年份:2022
- 资助金额:
$ 48.9万 - 项目类别:
Mechanism and regulation of meiotic recombination
减数分裂重组的机制和调控
- 批准号:
9264548 - 财政年份:2016
- 资助金额:
$ 48.9万 - 项目类别:
Mechanism and regulation of meiotic recombination
减数分裂重组的机制和调控
- 批准号:
9920159 - 财政年份:2016
- 资助金额:
$ 48.9万 - 项目类别:
Mechanism and regulation of meiotic recombination
减数分裂重组的机制和调控
- 批准号:
10612798 - 财政年份:2016
- 资助金额:
$ 48.9万 - 项目类别:
Mechanism and regulation of meiotic recombination
减数分裂重组的机制和调控
- 批准号:
9071085 - 财政年份:2016
- 资助金额:
$ 48.9万 - 项目类别:
Mechanism and regulation of meiotic recombination
减数分裂重组的机制和调控
- 批准号:
10393654 - 财政年份:2016
- 资助金额:
$ 48.9万 - 项目类别:
Mechanism and regulation of meiotic recombination
减数分裂重组的机制和调控
- 批准号:
10164542 - 财政年份:2016
- 资助金额:
$ 48.9万 - 项目类别:
FASEB SRC on Yeast Chromosome Structure, Replication and Segregation
FASEB SRC 关于酵母染色体结构、复制和分离
- 批准号:
8398634 - 财政年份:2012
- 资助金额:
$ 48.9万 - 项目类别:
相似海外基金
How Does Particle Material Properties Insoluble and Partially Soluble Affect Sensory Perception Of Fat based Products
不溶性和部分可溶的颗粒材料特性如何影响脂肪基产品的感官知觉
- 批准号:
BB/Z514391/1 - 财政年份:2024
- 资助金额:
$ 48.9万 - 项目类别:
Training Grant
BRC-BIO: Establishing Astrangia poculata as a study system to understand how multi-partner symbiotic interactions affect pathogen response in cnidarians
BRC-BIO:建立 Astrangia poculata 作为研究系统,以了解多伙伴共生相互作用如何影响刺胞动物的病原体反应
- 批准号:
2312555 - 财政年份:2024
- 资助金额:
$ 48.9万 - 项目类别:
Standard Grant
RII Track-4:NSF: From the Ground Up to the Air Above Coastal Dunes: How Groundwater and Evaporation Affect the Mechanism of Wind Erosion
RII Track-4:NSF:从地面到沿海沙丘上方的空气:地下水和蒸发如何影响风蚀机制
- 批准号:
2327346 - 财政年份:2024
- 资助金额:
$ 48.9万 - 项目类别:
Standard Grant
Graduating in Austerity: Do Welfare Cuts Affect the Career Path of University Students?
紧缩毕业:福利削减会影响大学生的职业道路吗?
- 批准号:
ES/Z502595/1 - 财政年份:2024
- 资助金额:
$ 48.9万 - 项目类别:
Fellowship
Insecure lives and the policy disconnect: How multiple insecurities affect Levelling Up and what joined-up policy can do to help
不安全的生活和政策脱节:多种不安全因素如何影响升级以及联合政策可以提供哪些帮助
- 批准号:
ES/Z000149/1 - 财政年份:2024
- 资助金额:
$ 48.9万 - 项目类别:
Research Grant
感性個人差指標 Affect-X の構築とビスポークAIサービスの基盤確立
建立个人敏感度指数 Affect-X 并为定制人工智能服务奠定基础
- 批准号:
23K24936 - 财政年份:2024
- 资助金额:
$ 48.9万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
How does metal binding affect the function of proteins targeted by a devastating pathogen of cereal crops?
金属结合如何影响谷类作物毁灭性病原体靶向的蛋白质的功能?
- 批准号:
2901648 - 财政年份:2024
- 资助金额:
$ 48.9万 - 项目类别:
Studentship
Investigating how double-negative T cells affect anti-leukemic and GvHD-inducing activities of conventional T cells
研究双阴性 T 细胞如何影响传统 T 细胞的抗白血病和 GvHD 诱导活性
- 批准号:
488039 - 财政年份:2023
- 资助金额:
$ 48.9万 - 项目类别:
Operating Grants
New Tendencies of French Film Theory: Representation, Body, Affect
法国电影理论新动向:再现、身体、情感
- 批准号:
23K00129 - 财政年份:2023
- 资助金额:
$ 48.9万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
The Protruding Void: Mystical Affect in Samuel Beckett's Prose
突出的虚空:塞缪尔·贝克特散文中的神秘影响
- 批准号:
2883985 - 财政年份:2023
- 资助金额:
$ 48.9万 - 项目类别:
Studentship