Light Sources for Quantum Communication in the 1300 nm Spectral Range

1300 nm 光谱范围内的量子通信光源

基本信息

项目摘要

The realization of novel and telecom-compatible optoelectronic devices for long-distance fiber-based quantum communication is the central goal of this project. The key technologies address single-QD-based single-photon sources (SPSs) for both electrical and optical excitation and advanced vertical-cavity surface-emitting lasers (VCSELs) in the ~1300 nm wavelength range. The overarching goal of the project is the combination of both key technologies, namely the realization of a highly-efficient single-photon source with indistinguishable photon emission in the telecom O-band (1.3 µm) that is resonantly driven by an electrically-pumped VCSEL. This paves the way for compact and practical SPSs based solely on semiconductor technology.The QD structures will be grown on top of distributed Bragg reflectors (DBRs) and dielectric multilayer structure will be deposited on top to form a microcavity. The dielectric structure will be further laterally patterned to allow for simple and highly-efficient coupling (>80%) of single photons into single-mode waveguides or standard single-mode fibers. Unique In-situ low-temperature electron-beam lithography will be applied to define the microcavitys’ base-mesas to properly align them to single pre-selected QDs for optimal device performance. For the resonant high-speed excitation of the single QDs high-speed VCSELs in the 1300 nm wavelength range will be realized. Therefore, both GaAs-based monolithic and InP-based wafer-fusion VCSEL-technologies will be utilized and tested for superior performance. The fabricated structures will be investigated and evaluated by quantum-optical experiments to determine the most important properties with respect to the envisaged applications like emission dynamics/rates, photon-extraction efficiency, purity of single-photon emission, and indistinguishability of the single photons.The synergy of the complementary long-standing expertise of both partners from Germany and Russia provides the necessary basis to succeed in this ambitious approach to foster real applications in quantum information processing in the telecom wavelength regime.
该项目的中心目标是实现用于长距离光纤量子通信的新型和电信兼容的光电器件。关键技术解决了基于单量子点的单光子源(SPS),用于电和光激发以及在~1300 nm波长范围内的先进垂直腔面发射激光器(VCSEL)。该项目的总体目标是将两项关键技术结合起来,即实现一种高效的单光子源,其光子发射在电信O波段(1.3 μm),由电泵浦VCSEL谐振驱动。量子点结构将生长在分布式布拉格反射器(DBR)上,在其上沉积多层介质结构形成微腔。介电结构将进一步横向图案化以允许单光子简单且高效地耦合(>80%)到单模波导或标准单模光纤中。独特的原位低温电子束光刻将被应用于定义微腔的基础台面,以正确地将它们对准单个预选的量子点,以获得最佳的器件性能。对于单量子点的共振高速激发,将实现1300 nm波长范围内的高速垂直腔面发射激光器。因此,GaAs基单片和InP基晶片熔合VCSEL技术都将被利用并测试其上级性能。制造的结构将通过量子光学实验进行研究和评估,以确定相对于所设想的应用的最重要的性质,如发射动力学/速率,光子提取效率,单光子发射的纯度,单光子的不可逆性。互补长-来自德国和俄罗斯的合作伙伴的长期专业知识为成功实现这一雄心勃勃的方法提供了必要的基础,以促进电信波长范围内量子信息处理的真实的应用。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Professor Dr. Stephan Reitzenstein其他文献

Professor Dr. Stephan Reitzenstein的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Professor Dr. Stephan Reitzenstein', 18)}}的其他基金

Full photon statistics of collective effects in semiconductor nanostructures
半导体纳米结构集体效应的全光子统计
  • 批准号:
    409799969
  • 财政年份:
    2018
  • 资助金额:
    --
  • 项目类别:
    Research Grants
Efficient Sources of Entangled Photon Pairs Based on Deterministic Quantum Dot Microlenses
基于确定性量子点微透镜的纠缠光子对的有效来源
  • 批准号:
    295465455
  • 财政年份:
    2016
  • 资助金额:
    --
  • 项目类别:
    Research Grants
Advanced Gallium Nitride based Quantum Devices
先进的氮化镓基量子器件
  • 批准号:
    259236611
  • 财政年份:
    2014
  • 资助金额:
    --
  • 项目类别:
    Research Grants
Integrated Sources of Entangled and Indistinguishable Photons
纠缠和不可区分光子的集成源
  • 批准号:
    263348684
  • 财政年份:
    2014
  • 资助金额:
    --
  • 项目类别:
    Research Grants
Gerichtete transversale Laseremission von elektrisch gepumpten Quantenpunkt-Mikrosäulen Resonatoren
电泵浦量子点微柱谐振器的定向横向激光发射
  • 批准号:
    162761742
  • 财政年份:
    2010
  • 资助金额:
    --
  • 项目类别:
    Research Grants
Heterogenous quantum systems for single photon delay and pulse shaping (HQSys)
用于单光子延迟和脉冲整形的异质量子系统 (HQSys)
  • 批准号:
    448532670
  • 财政年份:
  • 资助金额:
    --
  • 项目类别:
    Research Grants

相似海外基金

Probing the Quantum Vacuum with High Power Laser and 4th Generation Light Sources in the Search for New Physics
用高功率激光和第四代光源探测量子真空,寻找新物理
  • 批准号:
    EP/X01133X/1
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Research Grant
Probing the Quantum Vacuum with High Power Laser and 4th Generation Light Sources in the Search for New Physics
用高功率激光和第四代光源探测量子真空,寻找新物理
  • 批准号:
    EP/X010791/1
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Research Grant
Quantum sources of light based on perovskite quantum dots
基于钙钛矿量子点的量子光源
  • 批准号:
    580858-2022
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
    Alliance Grants
Semiconductor Nanowire-based Quantum Light Sources for Quantum Networks
用于量子网络的基于半导体纳米线的量子光源
  • 批准号:
    RGPIN-2018-05438
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
    Discovery Grants Program - Individual
Next generation quantum light sources based on 2D materials
基于二维材料的下一代量子光源
  • 批准号:
    RGPIN-2017-03815
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
    Discovery Grants Program - Individual
CAREER: Designer Halide Perovskite Nanocrystals with Controlled Light-Matter Interactions for On-Demand Quantum Light Sources
职业:设计具有受控光-物质相互作用的卤化物钙钛矿纳米晶体,用于按需量子光源
  • 批准号:
    2144136
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
Semiconductor Nanowire-based Quantum Light Sources for Quantum Networks
用于量子网络的基于半导体纳米线的量子光源
  • 批准号:
    RGPIN-2018-05438
  • 财政年份:
    2021
  • 资助金额:
    --
  • 项目类别:
    Discovery Grants Program - Individual
Advancing optical quantum technology using next generation light sources, ultrafast quantum optics, and foundational experiments
利用下一代光源、超快量子光学和基础实验推进光量子技术
  • 批准号:
    RGPIN-2017-03738
  • 财政年份:
    2021
  • 资助金额:
    --
  • 项目类别:
    Discovery Grants Program - Individual
Next generation quantum light sources based on 2D materials
基于二维材料的下一代量子光源
  • 批准号:
    RGPIN-2017-03815
  • 财政年份:
    2021
  • 资助金额:
    --
  • 项目类别:
    Discovery Grants Program - Individual
Next-generation quantum light sources for emerging quantum technologies
用于新兴量子技术的下一代量子光源
  • 批准号:
    RGPIN-2016-04135
  • 财政年份:
    2021
  • 资助金额:
    --
  • 项目类别:
    Discovery Grants Program - Individual
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了