Smooth extensions of generalized cohomology theories
广义上同调理论的平滑推广
基本信息
- 批准号:43044921
- 负责人:
- 金额:--
- 依托单位:
- 依托单位国家:德国
- 项目类别:Priority Programmes
- 财政年份:2007
- 资助国家:德国
- 起止时间:2006-12-31 至 2011-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The restriction of a generalized cohomology theory to the category of smooth manifolds admits a smooth refinement. The first example has been introduced by Cheeger-Simons in the case of ordinary cohomology with integral coefficients. One motivation of the definition of Cheeger-Simons was that in the presence of connections the integral Chern classes of a vector bundle can naturally be lifted to classes in the smooth extension of integral cohomology. It also has important applications in arithmetic geometry. Recently, smooth extensions of other generalized cohomology theories came into the focus of research in mathematics and mathematical physics. Smooth K-theory plays a role in the description of fields in string theory. Classes in smooth extensions of other cohomology theories appeared as Lagrangians of field theories, e.g. the WZW-model. The key paper paper [HS05] provides a general approach to smooth extensions of generalized cohomology theories.The current understanding of the theory of smooth extensions of generalized cohomology theories is a patchwork of examples and partial results. Missing elements of a theory are:1. an axiomatic set-up2. uniqueness of smooth extensions and their additional structures like products3. the theory of Umkehr maps4. a theory of natural transformations.
广义上同调理论对光滑流形范畴的限制允许光滑加细。第一个例子是Cheeger-Simons在常上同调的整系数情形下引入的。Cheeger-Simons定义的一个动机是,在存在联系的情况下,向量丛的积分陈类可以自然地提升到积分上同调的光滑扩展中的类。它在算术几何中也有重要的应用。近年来,其他广义上同调理论的光滑扩张成为数学和数学物理研究的热点。光滑K-理论在弦论的场描述中起着重要的作用。其他上同调理论的光滑扩张类出现在场论的拉格朗日中,例如WZW模型。[HS 05]是研究广义上同调理论光滑扩张的一个重要文献,目前对广义上同调理论光滑扩张理论的理解是一些例子和部分结果的拼凑。一个理论的缺失要素是:1。不言自明的安排2.光滑扩张的唯一性及其类似乘积的附加结构3. Umkehr映射理论4.自然转化理论
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Professor Dr. Ulrich Bunke其他文献
Professor Dr. Ulrich Bunke的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Professor Dr. Ulrich Bunke', 18)}}的其他基金
Geometrische und getwistete algebraische Topologie
几何和扭曲代数拓扑
- 批准号:
5453524 - 财政年份:2005
- 资助金额:
-- - 项目类别:
Priority Programmes
Geometrische Indextheorie für Faserbündel mit Ecken
带角纤维束的几何折射率理论
- 批准号:
5407055 - 财政年份:2003
- 资助金额:
-- - 项目类别:
Priority Programmes
Harmonische Analysis und Zetafunktionen
谐波分析和 zeta 函数
- 批准号:
5214420 - 财政年份:1999
- 资助金额:
-- - 项目类别:
Research Units
相似海外基金
Extensions of generalized structured component analysis and regularized fuzzy clusterwise generalizations of statistical methods
统计方法的广义结构化成分分析和正则化模糊聚类推广的扩展
- 批准号:
311881-2008 - 财政年份:2012
- 资助金额:
-- - 项目类别:
Discovery Grants Program - Individual
Extensions of generalized structured component analysis and regularized fuzzy clusterwise generalizations of statistical methods
统计方法的广义结构化成分分析和正则化模糊聚类推广的扩展
- 批准号:
311881-2008 - 财政年份:2011
- 资助金额:
-- - 项目类别:
Discovery Grants Program - Individual
Extensions of generalized structured component analysis and regularized fuzzy clusterwise generalizations of statistical methods
统计方法的广义结构化成分分析和正则化模糊聚类推广的扩展
- 批准号:
311881-2008 - 财政年份:2010
- 资助金额:
-- - 项目类别:
Discovery Grants Program - Individual
Extensions of generalized structured component analysis and regularized fuzzy clusterwise generalizations of statistical methods
统计方法的广义结构化成分分析和正则化模糊聚类推广的扩展
- 批准号:
311881-2008 - 财政年份:2009
- 资助金额:
-- - 项目类别:
Discovery Grants Program - Individual
Generalized Nonlinear Models: Theory, Computation and Extensions
广义非线性模型:理论、计算和扩展
- 批准号:
EP/G056323/1 - 财政年份:2009
- 资助金额:
-- - 项目类别:
Research Grant
Extensions of generalized structured component analysis and regularized fuzzy clusterwise generalizations of statistical methods
统计方法的广义结构化成分分析和正则化模糊聚类推广的扩展
- 批准号:
311881-2008 - 财政年份:2008
- 资助金额:
-- - 项目类别:
Discovery Grants Program - Individual
Efficient solvers for generalized incompressible flow problems with special emphasis on pressure Schur complement techniques for linearized Navier-Stokes equations and extensions
广义不可压缩流动问题的高效求解器,特别强调线性纳维-斯托克斯方程和扩展的压力舒尔补技术
- 批准号:
19206589 - 财政年份:2005
- 资助金额:
-- - 项目类别:
Research Grants
Generalized linear models and extensions
广义线性模型和扩展
- 批准号:
138287-1996 - 财政年份:1999
- 资助金额:
-- - 项目类别:
Discovery Grants Program - Individual
Generalized linear models and extensions
广义线性模型和扩展
- 批准号:
138287-1996 - 财政年份:1998
- 资助金额:
-- - 项目类别:
Discovery Grants Program - Individual