Application of string theory to localization problem
弦理论在定位问题中的应用
基本信息
- 批准号:04452048
- 负责人:
- 金额:$ 0.45万
- 依托单位:
- 依托单位国家:日本
- 项目类别:Grant-in-Aid for General Scientific Research (B)
- 财政年份:1992
- 资助国家:日本
- 起止时间:1992 至 1993
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Anderson localization has been studied by field theoretical method. In this research, the relation to string theory is investigated and by the use of the string scattering amplitude, the renormalization group equation for the Anderson localization is determined up to five-loop order. The multi-moment of conductivity fluctuation is also shown to be related to the dilaton and the massive field renormalizations. The string theory is closely related to the two-dimensional gravity coupled to matter fields. Matrix model for such case is investigated especially for the central charge c greater than one. The string susceptibility is evaluated from the perturbative series expansion. In a strong magnetic field, two dimensional electron within the lowest Landau level shows the quantum Hall effect. In a two-subband model, the state at the band center is shown to be delocalized and the exact value of the conductivity is obtained. Two dimensional electron in a strong magnetic field is described by Laughlin wave function. Using a complex matrix, which represents the two dimensional coordinate of electrons, we evaluate the correlation function at the edge state and confirmed the result of the conformal field theory. Also the relation to the two dimensional gravity is investigated by adding the interaction term.
用场论方法研究了安德森局域化。在这项研究中,弦理论的关系进行了调查,并通过使用弦散射振幅,重正化群方程的安德森本地化确定到五圈的顺序。电导率涨落的多矩也被证明是与介子和质量场重整化有关的。弦理论与耦合到物质场的二维引力密切相关。特别是当中心电荷c大于1时,研究了这种情况的矩阵模型。弦磁化率由微扰级数展开计算。在强磁场中,最低朗道能级的二维电子表现出量子霍尔效应。在两个子带模型中,在带中心的状态被示出为离域的电导率的精确值被获得。用Laughlin波函数描述强磁场中的二维电子。利用一个表示电子二维坐标的复矩阵,我们计算了边缘态的关联函数,证实了共形场理论的结果。并通过加入相互作用项,研究了与二维引力的关系。
项目成果
期刊论文数量(40)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
S.Hikami: "Finite N analysis of matrix models for n-Ising spin on a random surface" Physica A. (印刷中). (1994)
S. Hikami:“随机表面上 n-Ising 自旋的矩阵模型的有限 N 分析”Physica A.(出版中)。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
S.Hikami and E.Brezin: "Perturbative analysis of an n-Ising model on a random surface" Physics Letters. B295. 209-213 (1992)
S.Hikami 和 E.Brezin:“随机表面上 n-Ising 模型的微扰分析”《物理快报》。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
S.Hikami, M.Shirai and F.Wegner: "Anderson localization in the lowest Landau level for a two-subband model" Nuclear Physics. B408[FS]. 415-426 (1993)
S.Hikami、M.Shirai 和 F.Wegner:“双子带模型最低朗道能级的安德森定位”核物理。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
S.Hikami: "Exponent of n-Ising matter fields coupled to 2d gravity" Physics Letters B. 305. 327-331 (1993)
S.Hikami:“耦合到二维引力的 n-Ising 物质场的指数”《物理快报》B. 305. 327-331 (1993)
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
S.Hikami: "Correlation effect in low dimensional electron system" ed.by A.Okiji,Springer-Verlag, (1994)
S.Hikami:“低维电子系统中的相关效应”,A.Okiji 编,Springer-Verlag,(1994 年)
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
HIKAMI Shinobu其他文献
HIKAMI Shinobu的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('HIKAMI Shinobu', 18)}}的其他基金
Study of topological condensed matter problems by random matrices
用随机矩阵研究拓扑凝聚态问题
- 批准号:
21540380 - 财政年份:2009
- 资助金额:
$ 0.45万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Understanding of random matrix theory from topological field theoryand its applications
从拓扑场论理解随机矩阵理论及其应用
- 批准号:
19540395 - 财政年份:2007
- 资助金额:
$ 0.45万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Universalities in random matrix theory and quantum chaos
随机矩阵理论和量子混沌的普遍性
- 批准号:
14340114 - 财政年份:2002
- 资助金额:
$ 0.45万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Phase transition of random system and matrix model
随机系统和矩阵模型的相变
- 批准号:
08454106 - 财政年份:1996
- 资助金额:
$ 0.45万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Anderson localization of light
安德森光定位
- 批准号:
62460034 - 财政年份:1987
- 资助金额:
$ 0.45万 - 项目类别:
Grant-in-Aid for General Scientific Research (B)
相似海外基金
APPLICATIONS OF ANDERSON LOCALIZATION TO DYNAMICAL SYSTEMS AND EVOLUTIONARY PDE
ANDERSON 定位在动态系统和演化偏微分方程中的应用
- 批准号:
RGPIN-2020-04164 - 财政年份:2022
- 资助金额:
$ 0.45万 - 项目类别:
Discovery Grants Program - Individual
APPLICATIONS OF ANDERSON LOCALIZATION TO DYNAMICAL SYSTEMS AND EVOLUTIONARY PDE
ANDERSON 定位在动态系统和演化偏微分方程中的应用
- 批准号:
RGPIN-2020-04164 - 财政年份:2021
- 资助金额:
$ 0.45万 - 项目类别:
Discovery Grants Program - Individual
APPLICATIONS OF ANDERSON LOCALIZATION TO DYNAMICAL SYSTEMS AND EVOLUTIONARY PDE
ANDERSON 定位在动态系统和演化偏微分方程中的应用
- 批准号:
RGPIN-2020-04164 - 财政年份:2020
- 资助金额:
$ 0.45万 - 项目类别:
Discovery Grants Program - Individual
High-resolution infrared image transport by Anderson localization optical fibers
通过安德森定位光纤传输高分辨率红外图像
- 批准号:
19H02203 - 财政年份:2019
- 资助金额:
$ 0.45万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Tailoring optical properties of randomly nanotextured layers via Anderson localization
通过安德森定位调整随机纳米纹理层的光学特性
- 批准号:
410519108 - 财政年份:2018
- 资助金额:
$ 0.45万 - 项目类别:
Priority Programmes
Collaborative Research: Novel Laser and Nonlinear Properties of Anderson Localization Optical Fibers
合作研究:安德森定位光纤的新型激光和非线性特性
- 批准号:
1807857 - 财政年份:2018
- 资助金额:
$ 0.45万 - 项目类别:
Standard Grant
Collaborative Research: Novel Laser and Nonlinear Properties of Anderson Localization Optical Fibers
合作研究:安德森定位光纤的新型激光和非线性特性
- 批准号:
1808232 - 财政年份:2018
- 资助金额:
$ 0.45万 - 项目类别:
Standard Grant
Research on Anderson Localization and Quantum Level Statistics in QCD under Extreme Conditions
极端条件下QCD安德森局域化和量子能级统计研究
- 批准号:
17K05416 - 财政年份:2017
- 资助金额:
$ 0.45万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
GOALI: EFRI NewLaw: Non-reciprocal effects and Anderson localization of acoustic and elastic waves in periodic structures with broken P-symmetry of the unit cell
目标:EFRI 新定律:单胞 P 对称性破缺的周期性结构中声波和弹性波的非互易效应和安德森局域化
- 批准号:
1741677 - 财政年份:2017
- 资助金额:
$ 0.45万 - 项目类别:
Standard Grant
Anderson localization in molecular physics
分子物理学中的安德森定位
- 批准号:
482186-2015 - 财政年份:2015
- 资助金额:
$ 0.45万 - 项目类别:
University Undergraduate Student Research Awards