Baryon Number Violation in TeV range and Asymptotic Behavior of Perturbative series

TeV范围内的重子数违规和微扰级数的渐近行为

基本信息

  • 批准号:
    05640341
  • 负责人:
  • 金额:
    $ 0.9万
  • 依托单位:
  • 依托单位国家:
    日本
  • 项目类别:
    Grant-in-Aid for General Scientific Research (C)
  • 财政年份:
    1993
  • 资助国家:
    日本
  • 起止时间:
    1993 至 1994
  • 项目状态:
    已结题

项目摘要

In this research, we have studied tunneling phenomena in field theories, motivated by baryon number violation processes in the standard model.One important issue is that of the inter-relation between the perturbative calculation and non-perturbative one. In models with tunneling phenomena, it is known that the perturbation theory is not summable, not even by Borel's method. Thus some cutoff for the higher order terms are necessary. We have analyzed this issue and found that when a cutoff is introduced for the above purpose, it also cuts off the perturbative-like configurations in the non-perturbative calculation, i.e., instanton-anti-instanton pair with short separation.Another interesting development is that of the Valley method. It was originally proposed to handle instanton-anti-instanton pair by myself and Kikuchi. In this research, we applied it to continuous theory for the first time and solved it for a scalar theory in 4-dim. When there is a false vacuum, a vacuum of true vacuum … More can be created by quantum tunneling. This is studied by Coleman and is known to lead to a decay rate of the false vacuum. The valley method enables one to extend Coleman's analysis for 'induced decay' of the false vacuum. We have solved the valley equation for this case and identified bubbles that are created for induced decay.We further studied the complex-time methods. It is based on the saddle-point method for Fourier transform of the time variable in the Feynman kernel. Existence of the saddle-points in the complex-time-plane leads one to deform the integration contour to complex time. In the past, it was assumed that the integration contour deformed as such go though all the physical saddle points. We have carefully analyzed this problem and managed to prove the validity of this method and identified the weights of each saddle points which were so far in the clouds.Through these research I believe that I have been able to advance our undeerstanding of various aspects of quantum tunneling phenomena. Less
在这项研究中,我们研究了野外理论中的隧道现象,这是由标准模型中的Baryon数量违规过程所激发的。一个重要问题是扰动计算与非扰动的触发性计算之间的相互关联。在具有隧道现象的模型中,众所周知,即使是Borel的方法,也无法总结扰动理论。对于高阶条款的一些截止值是必要的。我们已经分析了这个问题,并发现当出于上述目的引入截止值时,它还切断了非扰动计算中的扰动样构型,即Instanton-Anti-Instanton对具有短分离。另一个有趣的发展是山谷方法。最初建议我自己和kikuchi处理Instanton-Anti-Instanton对。在这项研究中,我们首次将其应用于连续理论,并将其解决为4-DIM的标量理论。有一个错误的真空吸尘器,真空真空……可以通过量子隧穿创建更多。这是由科尔曼(Coleman)研究的,众所周知会导致虚假真空的衰减率。山谷方法使人们可以扩展科尔曼对假真空的“诱发衰减”的分析。我们已经解决了这种情况的山谷方程,并确定了为诱发衰变而创建的气泡。我们进一步研究了复杂的时间方法。它基于Feynman内核中时间变量的傅立叶变换的鞍点方法。在复杂的时间平面中存在鞍点的存在导致一个使整合轮廓变形为复杂时间。过去,假定集成轮廓变形时,所有物理鞍点都会变形。我们已经仔细地分析了这个问题,并设法证明了这种方法的有效性,并确定了到目前为止云中的每个鞍点的权重。通过这些研究,我相信我已经能够提高我们对量子隧道现象的各个方面的不可思议。较少的

项目成果

期刊论文数量(12)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Hideki Aoyama and Toshiyuki Harano: ""Complex-time Approach for Semi-classical Quantum Tunneling"" To appear in Mod.Phys.Lett.(1995)
Hideki Aoyama 和 Toshiyuki Harano:““半经典量子隧道的复杂时间方法””出现在 Mod.Phys.Lett.(1995)
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
Hideki Aoyama: ""Instantons in Large Order of the Pertubative Series"" Phys.Lett.B329. 285 (1994)
Hideki Aoyama:““微扰级数大阶瞬间””Phys.Lett.B329。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
H.Aoyama,T.Harano: "Complex-time approach for semi-classical quantum tunneling" Modern Physics Letters A. (発表予定). (1995)
H.Aoyama、T.Harano:“半经典量子隧道的复杂时间方法”现代物理学快报 A.(待出版)。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
H.Aoyama: "Instantons in large order of the perturbative series" Physics Letters B.329. 285-288 (1995)
H.Aoyama:“微扰级数大阶瞬间”《物理快报》B.329。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
H.Aoyama,T.Harano: "Complex-time path-integral formalism for quantum tunneling" Nuclear Physics. (発表予定). (1995)
H.Aoyama、T.Harano:“量子隧道的复杂时间路径积分形式”核物理(即将发表)。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

AOYAMA Hideki其他文献

皮膚のずれに対する皮下組織内の前腕橈側皮静脈の変形に関する有限要素解析
皮肤移位导致前臂头静脉皮下组织变形的有限元分析
  • DOI:
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    0
  • 作者:
    YASUDA Rei;NOGUCHI Tomoya;AOYAMA Hideki;Shiryu Morita,Masahito Ueda;山田宏,田上友貴
  • 通讯作者:
    山田宏,田上友貴
Improvement of Machining Accuracy by Correcting Tool Deflection Based on Identification of Actual Feed Speed Associated with Acceleration/Deceleration Control of Machine Tool
基于与机床加减速控制相关的实际进给速度识别,通过修正刀具偏转来提高加工精度

AOYAMA Hideki的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('AOYAMA Hideki', 18)}}的其他基金

Method to Make Display Pictures for Myopia, Hyperopia, Presbyopia, and Astigmatism without Anastigmatic Lens
近视、远视、老花、散光无散光镜片的显示画面制作方法
  • 批准号:
    25630040
  • 财政年份:
    2013
  • 资助金额:
    $ 0.9万
  • 项目类别:
    Grant-in-Aid for Challenging Exploratory Research
Development of Emerging System of Textures/Patterns Representing Natural Impression Based on Mathematical Models of Natural Events and KANSEI
基于自然事件和感性数学模型的代表自然印象的纹理/图案新兴系统的开发
  • 批准号:
    24360061
  • 财政年份:
    2012
  • 资助金额:
    $ 0.9万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Development of advanced CAD system to continuously support basic design, style design and detail design
开发先进的CAD系统,持续支持基础设计、款式设计和细节设计
  • 批准号:
    20360079
  • 财政年份:
    2008
  • 资助金额:
    $ 0.9万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Development of Digital Style Design System to Support Kansei Emerging and Reconstruct High Quality Form
开发支持感性新兴并重构高品质形式的数字风格设计系统
  • 批准号:
    18360080
  • 财政年份:
    2006
  • 资助金额:
    $ 0.9万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Development of System to Design Style Form from Emerging Information Based on Sensibility (Kansei)
基于感性(感性)的新兴信息设计风格形式系统的开发
  • 批准号:
    16360072
  • 财政年份:
    2004
  • 资助金额:
    $ 0.9万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Development of Computer Aided Style Design System Based on Implicit and Explicit Kansei Actions of Customers and Designers
基于顾客和设计师内隐和外显感性行为的计算机辅助风格设计系统的开发
  • 批准号:
    14550107
  • 财政年份:
    2002
  • 资助金额:
    $ 0.9万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Development of a system to support style design based on sensibility (KANSEI) features and to evaluate style design based on form information
开发支持基于感性(KANSEI)特征的风格设计以及基于形式信息评估风格设计的系统
  • 批准号:
    12555035
  • 财政年份:
    2000
  • 资助金额:
    $ 0.9万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Development of assisting system for style design based on visual Kansei Language
基于视觉感性语言的造型设计辅助系统开发
  • 批准号:
    11650138
  • 财政年份:
    1999
  • 资助金额:
    $ 0.9万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Development of a Agent Oriented System to Realize Shape Design Based on Kansei Method
基于感性方法的面向Agent实现形状设计的系统开发
  • 批准号:
    10555043
  • 财政年份:
    1998
  • 资助金额:
    $ 0.9万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Development of Remote Diagnosis System of Machine Tool by Utilizing Network
利用网络开发机床远程诊断系统
  • 批准号:
    09650147
  • 财政年份:
    1997
  • 资助金额:
    $ 0.9万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)

相似海外基金

Studies of Neutrino Oscillations, Neutrino Astronomy, and Baryon Number Violation at the Super-Kamiokande Observatory
超级神冈天文台的中微子振荡、中微子天文学和重子数破坏研究
  • 批准号:
    0071656
  • 财政年份:
    2000
  • 资助金额:
    $ 0.9万
  • 项目类别:
    Continuing Grant
Baryon Number Violating Process and Sphaleron
重子数违规过程和 Sphaleron
  • 批准号:
    03640276
  • 财政年份:
    1991
  • 资助金额:
    $ 0.9万
  • 项目类别:
    Grant-in-Aid for General Scientific Research (C)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了