Motion of Nonlinear Excitations in Quasi-One-Dimensional Electron-Phonon Systems

准一维电子声子系统中非线性激励的运动

基本信息

  • 批准号:
    05640446
  • 负责人:
  • 金额:
    $ 1.41万
  • 依托单位:
  • 依托单位国家:
    日本
  • 项目类别:
    Grant-in-Aid for General Scientific Research (C)
  • 财政年份:
    1993
  • 资助国家:
    日本
  • 起止时间:
    1993 至 1994
  • 项目状态:
    已结题

项目摘要

In this project, the dynamics of solitons in quasi-one-dimensional electron-phonon systems, typically realized in polyacetylene and similar conducting polymers, are investigated mainly in terms of numerical simulations. The lattice displacement is treated classically, while the electronic wave functions are calculated quantum mechanically. The initial state bearing a static soliton is determined by a set of self-consistent equations which are derived so as to minimize the total energy. The soliton is put in motion by applying a uniform electric field. The motion is determined by equation of motions for the lattice displacements and by the time-dependent Schrodinger equations for the electronic wave functions. The advantage of the present method is that we need not assume the shape of a moving soliton, since it is moved by a physical force in a natural way.The main results are(1)Soliton has a saturation velocity to 3 to 4 times of the sound velocity of the system.(2)The width of a movin … More g soliton is a decreasing function of the velocity and the maximum reduction rate is 10 to 20 % at the saturation velocity.(3)The kinetic energy of the soliton looks to diverge weakly at the saturation velocity.(4)The frequency of the amplitude oscillation mode around a moving soliton increases with the velocity, indicating that the inner structure of the soliton becomes harder with increasing velocity.(5)When there is a site-type short-ranged impurity, the effective potential for a soliton has a width of the same order of magnitude as the soliton width.(6)When there is a bond-type disorder, the effective potential for a soliton is step-like and therefore non-local. This is because the soliton considered in this work is a topological soliton connecting two degenerate ground states.(7)Introducing a phenomenological damping in the equation of motion for the lattice displacements, the soliton velocity takes a stationary value in the presence of a static electric field. From the proportionality relation between the stationary velocity and the electric field, the mobility of a soliton is estimated. It is pointed out that the room-temperature conductivity of an ideal polyacetylene can have a value comparable to those of good metals such as copper.The actibation energy of a soliton in the presence of ionized off-chain dopants is found to decreased rather rapidly with increasing the dopant concentration because of the finite width of the soliton. Less
在这个项目中,我们主要用数值模拟的方法研究了聚乙炔和类似的导电聚合物中实现的准一维电子-声子系统的孤子动力学。晶格位移被经典地处理,而电子波函数被量子力学计算。为了使总能量最小,由一组自洽方程来确定承载静态孤子的初始状态。通过施加均匀的电场使孤子运动起来。运动由晶格位移的运动方程和电子波函数的含时薛定谔方程决定。这种方法的优点是我们不需要假定运动孤子的形状,因为它是受物理力以自然的方式运动的。主要结果是:(1)孤子的饱和速度是系统声速的3-4倍;(2)运动…的宽度更多的孤子是速度的递减函数,在饱和速度下,最大衰减率为10%~20%。(3)在饱和速度下,孤子的动能看起来发散很弱。(4)运动孤子周围的振幅振动模的频率随着速度的增加而增加,表明孤子的内部结构随着速度的增加而变得更加坚硬。(5)当存在位点型短程杂质时,孤子的有效势具有与孤子宽度相同数量级的宽度。(6)当存在键型无序时,孤子的有效势是阶梯状的,因此是非定域的。这是因为本文所考虑的孤子是连接两个简并基态的拓扑孤子。(7)在晶格位移的运动方程中引入唯象阻尼项,在静电场的作用下,孤子的速度取一个固定值。根据定态速度与电场的比例关系,估算了孤子的迁移率。指出理想聚乙炔的室温电导率可以与铜等优良金属的电导率相媲美。由于孤子的有限宽度,发现在离链离子掺杂的情况下,孤子的激活能随掺杂浓度的增加而迅速下降。较少

项目成果

期刊论文数量(44)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
M.Kuwabara: "Electric Conduction due to Charged Solitors in Polyacetylene" J.Phys.Soc.Jpn.63. 1081-1089 (1994)
M.Kuwabara:“聚乙炔中带电孤子的导电”J.Phys.Soc.Jpn.63。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
Y.Ono: "Dynamics of a Fractionally Charged Soliton in a One-Dimensional Electron-Phonon System" Suppl.Prog.Theor.Phys.NO.113. 239-250 (1993)
Y.Ono:“一维电子-声子系统中分数带电孤子的动力学”Suppl.Prog.Theor.Phys.NO.113。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
M.Kuwabara: "Velocity Damping of a Charged Soliton in Polyacetylene" Synth.Met.55-57. 4584-4589 (1993)
M.Kuwabara:“聚乙炔中带电孤子的速度阻尼”Synth.Met.55-57。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
M.Kuwabara: "Electric Conduction due to Charged Soliton in Polyacetylene" J.Phys.Soc.Jpn.63. 1081-1089 (1994)
M.Kuwabara:“聚乙炔中带电孤子的导电”J.Phys.Soc.Jpn.63。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
M.Kuwabara: "Amplitude Mode around a Moving Soliton in Polyacetylene" J.Phys.Soc.62. 990-996 (1993)
M.Kuwabara:“聚乙炔中移动孤子周围的振幅模式”J.Phys.Soc.62。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

ONO Yoshiyuki其他文献

ONO Yoshiyuki的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('ONO Yoshiyuki', 18)}}的其他基金

LES analysis of the flow around a realistic scale-structure with circular section
具有圆形截面的真实尺度结构周围流动的 LES 分析
  • 批准号:
    19760400
  • 财政年份:
    2007
  • 资助金额:
    $ 1.41万
  • 项目类别:
    Grant-in-Aid for Young Scientists (B)
Peierls Transition and Phonon Softening in 2D Electron-Lattice System
二维电子晶格系统中的 Peierls 跃迁和声子软化
  • 批准号:
    16540329
  • 财政年份:
    2004
  • 资助金额:
    $ 1.41万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Peierls Transition and Nonlinear Localized Excitations in Two-dimensional Electron-Lattice System
二维电子晶格系统中的 Peierls 跃迁和非线性局域激发
  • 批准号:
    14540365
  • 财政年份:
    2002
  • 资助金额:
    $ 1.41万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Level Statistics and Anderson Localization in Disordered Electron Systems
无序电子系统中的能级统计和安德森定位
  • 批准号:
    07640520
  • 财政年份:
    1995
  • 资助金额:
    $ 1.41万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Theoretical Study of the Quantum Hall Effect in Systems with Finite Width.
有限宽度系统中量子霍尔效应的理论研究。
  • 批准号:
    63540281
  • 财政年份:
    1988
  • 资助金额:
    $ 1.41万
  • 项目类别:
    Grant-in-Aid for General Scientific Research (C)

相似海外基金

EAGER:SUPER: In-situ Synthesis of a New Functional Material: Superconducting Polyacetylene
EAGER:SUPER:原位合成新型功能材料:超导聚乙炔
  • 批准号:
    2132696
  • 财政年份:
    2021
  • 资助金额:
    $ 1.41万
  • 项目类别:
    Continuing Grant
Effect of polyacetylene compounds from Apiaceae vegetables on regulation of glucose metabolism in hepatocyte
伞形科蔬菜中的聚乙炔化合物对肝细胞糖代谢的调节作用
  • 批准号:
    18K13036
  • 财政年份:
    2018
  • 资助金额:
    $ 1.41万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Creation of palladium nanocluster-substituted polyacetylene hybrid, and development to functional materials
钯纳米团簇取代聚乙炔杂化物的创建及功能材料的开发
  • 批准号:
    18K19121
  • 财政年份:
    2018
  • 资助金额:
    $ 1.41万
  • 项目类别:
    Grant-in-Aid for Challenging Research (Exploratory)
Nnew approch to discover the medicinal seeds using the cross-reactivity of monoclonal antibody
利用单克隆抗体交叉反应发现药用种子的新方法
  • 批准号:
    24590139
  • 财政年份:
    2012
  • 资助金额:
    $ 1.41万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Enviromental stress regulated polyacetylene physiology and metabolism
环境应激调节聚乙炔生理和代谢
  • 批准号:
    374211-2009
  • 财政年份:
    2011
  • 资助金额:
    $ 1.41万
  • 项目类别:
    Alexander Graham Bell Canada Graduate Scholarships - Doctoral
Enviromental stress regulated polyacetylene physiology and metabolism
环境应激调节聚乙炔生理和代谢
  • 批准号:
    374211-2009
  • 财政年份:
    2010
  • 资助金额:
    $ 1.41万
  • 项目类别:
    Alexander Graham Bell Canada Graduate Scholarships - Doctoral
Enviromental stress regulated polyacetylene physiology and metabolism
环境应激调节聚乙炔生理和代谢
  • 批准号:
    374211-2009
  • 财政年份:
    2009
  • 资助金额:
    $ 1.41万
  • 项目类别:
    Alexander Graham Bell Canada Graduate Scholarships - Doctoral
Creation of Special Shape Nano-scale Materials by Using Templates Derived from Higher Ordered
使用源自高序的模板创建特殊形状的纳米材料
  • 批准号:
    15310085
  • 财政年份:
    2003
  • 资助金额:
    $ 1.41万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
SGER: Metathesis-Doped Polyacetylene
SGER:复分解掺杂聚乙炔
  • 批准号:
    0320583
  • 财政年份:
    2003
  • 资助金额:
    $ 1.41万
  • 项目类别:
    Standard Grant
Synthesis of Helical Liquid Crystalline Conjugated Polymers and Development of Chiral Luminescent Materials
螺旋液晶共轭聚合物的合成及手性发光材料的开发
  • 批准号:
    14205135
  • 财政年份:
    2002
  • 资助金额:
    $ 1.41万
  • 项目类别:
    Grant-in-Aid for Scientific Research (A)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了