DYNAMICS OF SPATIALLY PERIODIC FLOWS

空间周期性流动的动力学

基本信息

  • 批准号:
    05650066
  • 负责人:
  • 金额:
    $ 0.7万
  • 依托单位:
  • 依托单位国家:
    日本
  • 项目类别:
    Grant-in-Aid for General Scientific Research (C)
  • 财政年份:
    1993
  • 资助国家:
    日本
  • 起止时间:
    1993 至 1994
  • 项目状态:
    已结题

项目摘要

(a) It is found that the large-scale mode with the negative eddy viscosity effect or the periodic mode whose periodicity is the same as the main glow gives the critil linear Reynolds number of the rectangular cell flow. The vortex merging which was observed in the experiments by Tabelin et al (1990) is explained qualitatively by superposition of the periodic mode on the main flow. (Phys.Fluids, Vol.7(No.2), pp-302-306(1995).) The truncated nolinear ODE system is derived to show that a steady secondary flow exists in the supercritical regime. (RIMS 1995.1.)(b) In the contrast with the parallel flows, the primary instability due to the three-dimensional disturbance may take place in the non-paralled flows. We have presented explicit examples that the critical Reynolds number is actually determined by the three-dimensional disturbances. The rectangular cell flows (to appear in Plys.Rev.E(1995)) and the triangular ones with some parameter ranges belong to these cases.(c) On the nonlinear stability of the quasi-two-dimensional flows. The effect of the bottom-friction in the thin layr is approximatety regarded as the Rayleigh friction proportional to the horizontal velocity in the two-dimesional NS equation. This procedure is often called the quasi-two-dimensional approximation. We have shown that the critical Reynolds number by the linear stability as well as the nonlinear stability by the energy method increases linearly with increasing the coefficient of the Rayleigh friction. (IUTAM Symposium Potsdam, NY,USA July 26-31.1993.in preparation.)
(a)结果表明,具有负涡粘效应的大尺度模态或与主辉光周期相同的周期模态给出了矩形胞流的临界线性雷诺数。Tabelin等人(1990)在实验中观察到的旋涡合并,用主流上周期性模态的叠加定性地解释了。(Phys.Fluids,第7卷(第2期),第302 - 306页(1995))。截断的非线性常微分方程组的推导表明,一个稳定的二次流存在于超临界状态。(RIMS 1995.1.)(b)与平行流相比,非平行流中可能发生由三维扰动引起的主要不稳定性。我们已经给出了明确的例子,临界雷诺数实际上是由三维扰动。矩形胞流(将出现在Plys. Rev. E(1995)中)和具有某些参数范围的三角形胞流属于这些情况。(c)准二维流动的非线性稳定性。在二维NS方程中,薄层底摩阻力的影响近似为与水平速度成正比的Rayleigh摩阻力。这个过程通常被称为准二维近似。我们已经表明,临界雷诺数的线性稳定性,以及非线性稳定性的能量方法增加线性的瑞利摩擦系数。(IUTAM研讨会波茨坦,纽约,美国7月www.example.com准备。)

项目成果

期刊论文数量(40)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
K.Gotoh, Y.Murakami and M.Murakami: "Instability of spatially periodic flow to three-dimensional disturbances" Fluid Dynamics Res.12. 271-279 (1993)
K.Gotoh、Y.Murakami 和 M.Murakami:“空间周期流对三维扰动的不稳定性”流体动力学 Res.12。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
K.Gotoh: "Large-scale and periodic modes in rectangular cell flow" Phys.Fluids. 7. 302-306 (1995)
K.Gotoh:“矩形细胞流中的大规模和周期性模式”Phys.Fluids。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
後藤金英: "Instability of spatially period ic flow to the three-dimensional distu rbances" Fluid Dynamics Research. 12. 271-279 (1993)
Kinhide Goto:“空间周期流的不稳定性对三维扰动的影响”流体动力学研究 12. 271-279 (1993)。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
Y.MURAKAMI: "Unstable Modes of the Inviscid Kolmogorov Flow" J.Phys.Soc.Jpn.63. 2825-2826 (1994)
Y.MURAKAMI:“无粘柯尔莫哥洛夫流的不稳定模式”J.Phys.Soc.Jpn.63。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
Y.Murakami, H.Fukuta and K.Gotoh: "Nonlinear stability of the Kolmogorov flow with the the bottom-friction using the energy method" RIMS Publication. 852. 52-66 (1993)
Y.Murakami、H.Fukuta 和 K.Gotoh:“使用能量法实现具有底部摩擦的柯尔莫哥洛夫流的非线性稳定性”RIMS 出版物。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

MURAKAMI Youichi其他文献

MURAKAMI Youichi的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('MURAKAMI Youichi', 18)}}的其他基金

Study of Local Electronic State and the Hybridized Orbital Order under Magnetic Field and Pressure by Resonant Soft X-ray and Neutron Scattering
利用共振软X射线和中子散射研究磁场和压力下的局域电子态和杂化轨道序
  • 批准号:
    21224008
  • 财政年份:
    2009
  • 资助金额:
    $ 0.7万
  • 项目类别:
    Grant-in-Aid for Scientific Research (S)
The Ordering and the Fluctuation of Electronic Degrees of Freedom Studied by Coherent X-rays and High Brilliance Neutrons
相干X射线和高亮度中子研究电子自由度的有序性和涨落
  • 批准号:
    16104005
  • 财政年份:
    2004
  • 资助金额:
    $ 0.7万
  • 项目类别:
    Grant-in-Aid for Scientific Research (S)
Study of Precise Crystal Structure and Electronic State of Quantum Materials Phases by Synchrotron X-ray Diffraction
同步辐射X射线衍射研究量子材料相的精确晶体结构和电子态
  • 批准号:
    16076202
  • 财政年份:
    2004
  • 资助金额:
    $ 0.7万
  • 项目类别:
    Grant-in-Aid for Scientific Research on Priority Areas
The study on observation technique of orbital orderingby synchrotron radiation, neutron, and electron beams.
同步辐射、中子、电子束轨道有序观测技术研究。
  • 批准号:
    12304019
  • 财政年份:
    2000
  • 资助金额:
    $ 0.7万
  • 项目类别:
    Grant-in-Aid for Scientific Research (A)
Charge and Spin Ordering in Layered Perovskite-type Oxide Studied by Synchrotron X-ray Diffraction
通过同步加速器 X 射线衍射研究层状钙钛矿型氧化物中的电荷和自旋排序
  • 批准号:
    09440144
  • 财政年份:
    1997
  • 资助金额:
    $ 0.7万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)

相似海外基金

CAREER: Nonlinear stability mechanisms and boundary layer singularities in fluid flows
职业:流体流动中的非线性稳定机制和边界层奇点
  • 批准号:
    1911413
  • 财政年份:
    2018
  • 资助金额:
    $ 0.7万
  • 项目类别:
    Continuing Grant
The Nonlinear Stability of Black Holes and the Structure of Spacetime Singularities in General Relativity
广义相对论中黑洞的非线性稳定性与时空奇点的结构
  • 批准号:
    1709270
  • 财政年份:
    2017
  • 资助金额:
    $ 0.7万
  • 项目类别:
    Continuing Grant
Nonlinear stability of viscous pressure or gravity driven multilayer flows
粘性压力或重力驱动的多层流的非线性稳定性
  • 批准号:
    1943246
  • 财政年份:
    2017
  • 资助金额:
    $ 0.7万
  • 项目类别:
    Studentship
CAREER: Nonlinear stability mechanisms and boundary layer singularities in fluid flows
职业:流体流动中的非线性稳定机制和边界层奇点
  • 批准号:
    1652134
  • 财政年份:
    2017
  • 资助金额:
    $ 0.7万
  • 项目类别:
    Continuing Grant
Nonlinear Stability Analysis of Tiltrotors in Transition
倾转旋翼机转场非线性稳定性分析
  • 批准号:
    1818326
  • 财政年份:
    2016
  • 资助金额:
    $ 0.7万
  • 项目类别:
    Studentship
Nonlinear stability of patterns
模式的非线性稳定性
  • 批准号:
    1408742
  • 财政年份:
    2014
  • 资助金额:
    $ 0.7万
  • 项目类别:
    Continuing Grant
Linear and Nonlinear Stability for Infinite-Dimensional Dynamical Systems
无限维动力系统的线性和非线性稳定性
  • 批准号:
    1211315
  • 财政年份:
    2012
  • 资助金额:
    $ 0.7万
  • 项目类别:
    Standard Grant
Infinite-dimensional dynamical systems: nonlinear stability, large-time transient behaviors, and bifurcation
无限维动力系统:非线性稳定性、大时间瞬态行为和分岔
  • 批准号:
    1007450
  • 财政年份:
    2010
  • 资助金额:
    $ 0.7万
  • 项目类别:
    Standard Grant
Nonlinear Stability of Multidimensional Structures in Fluid Dynamics
流体动力学中多维结构的非线性稳定性
  • 批准号:
    1001616
  • 财政年份:
    2010
  • 资助金额:
    $ 0.7万
  • 项目类别:
    Continuing Grant
Traveling Fronts with Unstable Continuous Spectrum: Geometric Structure and Nonlinear Stability Properties
具有不稳定连续谱的行进前沿:几何结构和非线性稳定性特性
  • 批准号:
    0908009
  • 财政年份:
    2009
  • 资助金额:
    $ 0.7万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了