Lagrangian-Convolutional Networks for Video Classification
用于视频分类的拉格朗日卷积网络
基本信息
- 批准号:434160640
- 负责人:
- 金额:--
- 依托单位:
- 依托单位国家:德国
- 项目类别:Research Grants
- 财政年份:2019
- 资助国家:德国
- 起止时间:2018-12-31 至 2021-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The amount of video data has rapidly increased throughout the last decades. This development rises the demand for effective methods to analyse video data beyond a single frame image-based analysis. Specifically the detection quantification and classification of dynamic motion information is a crucial aspect for processing time-dependent video data which yet needs to be fully exploited. With this project we request funding to develop a novel system for analysis and classification of video data based on a Lagrangian methodology. With our preliminary work we highlighted the innovative potential for video processing using such methods in combination with recent machine learning approaches. With this project we like to evolve and substantiate this approach and aim to develop a novel concept for video-level description and classification: the Lagrangian- Convolutional Neural Network (LaCNN). This concept takes advantage of recent in-depth understanding of motion signatures in a video sequence and exploits the capabilities of the Lagrangian methodology and the encoded motion information more effectively. In summary this novel concept will lead to a competitive effective and more transparent video classification system in comparison to existing state of the art methods.
在过去的几十年里,视频数据的数量迅速增加。这一发展增加了对有效的视频数据分析方法的需求,而不仅仅是基于单帧图像的分析。具体来说,动态运动信息的检测、量化和分类是处理时变视频数据的一个重要方面,目前还有待充分开发。在这个项目中,我们请求资助开发一个基于拉格朗日方法的视频数据分析和分类的新系统。通过我们的初步工作,我们强调了使用这些方法结合最近的机器学习方法进行视频处理的创新潜力。在这个项目中,我们希望发展和证实这种方法,并旨在为视频级描述和分类开发一个新的概念:拉格朗日-卷积神经网络(LaCNN)。这个概念利用了最近对视频序列中运动特征的深入理解,并更有效地利用了拉格朗日方法和编码运动信息的能力。总之,与现有的最先进的方法相比,这一新颖的概念将导致一个具有竞争力的、有效的和更透明的视频分类系统。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Professor Dr.-Ing. Thomas Sikora其他文献
Professor Dr.-Ing. Thomas Sikora的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Professor Dr.-Ing. Thomas Sikora', 18)}}的其他基金
Hybrid 3D Reconstruction for Geometry-Based Free Viewpoint Video
基于几何的自由视点视频的混合 3D 重建
- 批准号:
232339705 - 财政年份:2013
- 资助金额:
-- - 项目类别:
Research Grants
Hybrides Analyse-Syntheseverfahren zur 2D-3D-Videokonvertierung
2D-3D视频转换的混合分析合成方法
- 批准号:
164804818 - 财政年份:2010
- 资助金额:
-- - 项目类别:
Research Grants
Multiple-Description-Codierung von Sprachsignalen
语音信号的多描述编码
- 批准号:
5441934 - 财政年份:2004
- 资助金额:
-- - 项目类别:
Research Grants
Vereinheitlichte, hierarchische Personendeskriptoren zur Lokalisierung und zum Retrieval von Personen in Videobildern mittels nicht-linearer Klassifikationsmethoden
统一的、分层的人物描述符,用于使用非线性分类方法定位和检索视频图像中的人物
- 批准号:
5348146 - 财政年份:2002
- 资助金额:
-- - 项目类别:
Priority Programmes
相似海外基金
ATD: Sparse and Localized Graph Convolutional Networks for Anomaly Detection and Active Learning
ATD:用于异常检测和主动学习的稀疏和局部图卷积网络
- 批准号:
2220574 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Standard Grant
Multi-Resolution Curriculum Learning Guided Convolutional Neural Networks for Automatic Segmentation of iPS Cell Colonies
多分辨率课程学习引导卷积神经网络自动分割 iPS 细胞集落
- 批准号:
23K11170 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Scientific Research (C)
Automated CT Mucus Scoring Using Convolutional Neural Networks
使用卷积神经网络进行自动 CT 粘液评分
- 批准号:
570112-2022 - 财政年份:2022
- 资助金额:
-- - 项目类别:
Postgraduate Scholarships - Doctoral
Investigating Human Color Constancy Using Convolutional Neural Networks
使用卷积神经网络研究人类颜色恒定性
- 批准号:
560187-2021 - 财政年份:2022
- 资助金额:
-- - 项目类别:
Postgraduate Scholarships - Doctoral
Convolutional Neural Networks for Real-Time Weed Identification in Wild Blueberry Production
用于野生蓝莓生产中实时杂草识别的卷积神经网络
- 批准号:
572319-2022 - 财政年份:2022
- 资助金额:
-- - 项目类别:
University Undergraduate Student Research Awards
Connectivity Network Classification Using Three-Dimensional Convolutional Neural Networks
使用三维卷积神经网络的连接网络分类
- 批准号:
545603-2020 - 财政年份:2022
- 资助金额:
-- - 项目类别:
Postgraduate Scholarships - Doctoral
Developing distributed learning algorithms for convolutional neural networks: a novel method for training deep learning models without sharing and collecting data
开发卷积神经网络的分布式学习算法:一种无需共享和收集数据即可训练深度学习模型的新方法
- 批准号:
546140-2020 - 财政年份:2022
- 资助金额:
-- - 项目类别:
Postdoctoral Fellowships
Spectral encoding and machine learning algorithms for photonic convolutional neural networks
光子卷积神经网络的光谱编码和机器学习算法
- 批准号:
572906-2022 - 财政年份:2022
- 资助金额:
-- - 项目类别:
University Undergraduate Student Research Awards
Developing, Applying, and Explaining Graph Convolutional Neural Networks in the Context of Genome Wide Association Analyses to Increase Attention Deficit/Hyperactivity Disorder Prediction Accuracy, Extract Novel Genomic Networks Associated With Attention
在全基因组关联分析的背景下开发、应用和解释图卷积神经网络,以提高注意力缺陷/多动症预测准确性,提取与注意力相关的新型基因组网络
- 批准号:
457223 - 财政年份:2021
- 资助金额:
-- - 项目类别:
Studentship Programs
Developing distributed learning algorithms for convolutional neural networks: a novel method for training deep learning models without sharing and collecting data
开发卷积神经网络的分布式学习算法:一种无需共享和收集数据即可训练深度学习模型的新方法
- 批准号:
546140-2020 - 财政年份:2021
- 资助金额:
-- - 项目类别:
Postdoctoral Fellowships














{{item.name}}会员




